본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
NT
by recently order
by view order
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 14190
The hereditary factor of autism revealed
Korean researchers have successfully investigated the causes and hereditary factors for autistic behavior and proposed a new treatment method with fewer side effects. This research was jointly supported by the Ministry of Education, Science and Technology and the National Research Foundation as part of the Leading Researcher and Science Research Center Program The research findings were publishing in the June edition of Nature magazine and will also be introduced in the July edition of Nature Reviews Drug Discovery, under the title ‘Autistic-like social behavior in Shank2-mutant mice improved by restoring NMDA receptor function’. The research team found that lack of Shank2 genes in mice, which are responsible for the production of synapse proteins, caused autistic-like behavior. The results strongly suggested that the Shank2 gene was linked to autistic behavior and that Shank2 deficiency induced autistic behaviors. Autism is a neural development disorder characterized by impaired social interaction, repetitive behavior, mental retardation, anxiety and hyperactivity. Around 100 million people worldwide display symptoms of autistic behavior. Recent studies conducted by the University of Washington revealed that 1 out of 3 young adults who display autistic behavior do not fit into the workplace or get accepted to college, a much higher rate than any other disorder. However, an effective cure has not yet been developed and current treatments are limited to reducing repetitive behavior. The research team confirmed autistic-like social behavior in mice without the Shank2 genes and that the mice had decreased levels of neurotransmission in the NMDA receptor. The mice also showed damaged synaptic plasticity* in the hippocampus**. * Plasticity: ability of the connectionbetween two neurons to change in strength in response to transmission of information **Hippocampus: part of the brain responsible for short-term and long-term memory as well as spatial navigation. The research team also found out that, to restore the function of the NMDA receptor, the passive stimulation of certain receptors, such as the mGLuR5, yielded better treatment results than the direct stimulation of the NMDA. This greatly reduces the side effects associated with the direct stimulation of receptors, resulting in a more effective treatment method. This research successfully investigated the function of the Shank2 gene in the nerve tissue and showed how the reduced function of the NMDA receptor, due to the lack of the gene, resulted in autistic behavior. It also provided new possibilities for the treatment of autistic behavior and impaired social interaction
2012.06.24
View 10821
Flexible Nanogenerator Technology
KAIST research team successfully developed the foundation technology that will enable to fabrication of low cost, large area nanogenerator. Professor Lee Gun Jae’s team (Department of Materials Science and Engineering) published a dissertation on a nanogenerator using nanocomplexes as the cover dissertation of the June edition of Advanced Materials. The developed technology is receiving rave reviews for having overcome the complex and size limitations of the nanogenerator fabrication process. A nanogenerator is an electricity generator that uses materials in the nanoscale and uses piezoelectricity that creates electricity with the application of physical force. The generation technology using piezoelectricity was appointed as one of top 10 promising technologies by MIT in 2009 and was included in the 45 innovative technologies that will shake the world by Popular Science Magazine in 2010. The only nanogenerator thus far was the ZnO model suggested by Georgia Tech’s Professor Zhong Lin Wang in 2005. Professor Lee’s team used ceramic thin film material BaTiO3 which has 15~20 times greater piezoelectric capacity than ZnO and thus improved the overall performance of the device. The use of a nanocomplex allows large scale production and the simplification of the fabrication process itself. The team created a mixture of PDMS (polydimethylsiloxane) with BaTiO3 and either of CNT (Carbon Nanotube) or RGO (Reduced Graphene Oxide) which has high electrical conductivity and applied this mixture to create a large scale nanogenerator.
2012.06.18
View 12454
ICISTS-KAIST: Korea's Largest Scale University Student International Conference
An entirely student led and planned international conference will be held at KAIST. KAIST student club ICISTS will be holding the ‘ICISTS-KAIST 2012’ conference from the 6th of August till the 10th of August. This is the 8th annual conference which started in 2005 which is planned and executed entirely by undergraduate students. The conference aims at examining the rapidly changing relationship between science and technology and society and actively debate on the matter. The 1st conference involved only 150 students of which only a few from abroad. However last year’s conference involved 300 students from 22 nations from all over the world. The keyword of the conference in the much talked about ‘integration’ and therefore aims at establishing interdisciplinary networks that go beyond background and borders. Not only does ‘ICISTS-KAIST’ involves panel talks by speakers, but also offers small scale lectures simultaneously which allows participants to attend talks that suit their individual preferences. Group discussion session between participants and speakers will be held along with various performances and booths to introduce Korean traditional culture to international participants. The theme of this year’s conference is “Age of Integration: Beyond the Borders of Knowledge”. It is comprised of 3 smaller conferences with themes of Art and Science, Natural Sciences and Social Sciences, and Science and Technology and Human Society. This year’s conference will host lectures by Professor S. Shyam Sundar of Pennsylvania State Communication University, Professor Bruce E. Seely Dean of Michigan School of Engineering, and Professor Shin Hui Seop who was named as the ‘1st National Scientist’ in 2005. Registration ends on the 15th of July and more information can be found at www.icists.org.
2012.06.18
View 8038
President Nam Pyo Suh receives Honorary Doctorate from Bilkent University, Turkey
President of KAIST Nam Pyo Suh received an Honorary Doctorate from Turkey’s Bilkent University on June 13th, 2012. Bilkent University revealed that it is President Suh’s invention of a plastic manufacture process used all over the world and the combination of academic achievements like the creation of the axiomatic design theory that merits the Honorary Doctorate. After the presentation ceremony, President Suh gave a lecture to professors and students at Bilkent University on the "University of the Future: Changing Education Paradigm." Bilkent University is located in Ankara, the capital of Turkey and was established in 1984, which is largely regarded as Turkey’s best private university. It ranked 32 out of 50 universities in Times Higher Educations’ 100 Under 50 List of World’s Best New Universities.
2012.06.18
View 8402
Production of chemicals without petroleum
Systems metabolic engineering of microorganisms allows efficient production of natural and non-natural chemicals from renewable non-food biomass In our everyday life, we use gasoline, diesel, plastics, rubbers, and numerous chemicals that are derived from fossil oil through petrochemical refinery processes. However, this is not sustainable due to the limited nature of fossil resources. Furthermore, our world is facing problems associated with climate change and other environmental problems due to the increasing use of fossil resources. One solution to address above problems is the use of renewable non-food biomass for the production of chemicals, fuels and materials through biorefineries. Microorganisms are used as biocatalysts for converting biomass to the products of interest. However, when microorganisms are isolated from nature, their efficiencies of producing our desired chemicals and materials are rather low. Metabolic engineering is thus performed to improve cellular characteristics to desired levels. Over the last decade, much advances have been made in systems biology that allows system-wide characterization of cellular networks, both qualitatively and quantitatively, followed by whole-cell level engineering based on these findings. Furthermore, rapid advances in synthetic biology allow design and synthesis of fine controlled metabolic and gene regulatory circuits. The strategies and methods of systems biology and synthetic biology are rapidly integrated with metabolic engineering, thus resulting in "systems metabolic engineering". In the paper published online in Nature Chemical Biology on May 17, Professor Sang Yup Lee and his colleagues at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea present new general strategies of systems metabolic engineering for developing microorganisms for the production of natural and non-natural chemicals from renewable biomass. They first classified the chemicals to be produced into four categories based on whether they have thus far been identified to exist in nature (natural vs. nonnatural) and whether they can be produced by inherent pathways of microorganisms (inherent, noninherent, or created): natural-inherent, natural-noninherent, non-natural-noninherent, and non-natural-created ones. General strategies for systems metabolic engineering of microorganisms for the production of these chemicals using various tools and methods based on omics, genome-scale metabolic modeling and simulation, evolutionary engineering, synthetic biology are suggested with relevant examples. For the production of non-natural chemicals, strategies for the construction of synthetic metabolic pathways are also suggested. Having collected diverse tools and methods for systems metabolic engineering, authors also suggest how to use them and their possible limitations. Professor Sang Yup Lee said "It is expected that increasing number of chemicals and materials will be produced through biorefineries. We are now equipped with new strategies for developing microbial strains that can produce our desired products at very high efficiencies, thus allowing cost competitiveness to those produced by petrochemical refineries." Editor of Nature Chemical Biology, Dr. Catherine Goodman, said "It is exciting to see how quickly science is progressing in this field – ideas that used to be science fiction are taking shape in research labs and biorefineries. The article by Professor Lee and his colleagues not only highlights the most advanced techniques and strategies available, but offers critical advice to progress the field as a whole." The works of Professor Lee have been supported by the Advanced Biomass Center and Intelligent Synthetic Biology Center of Global Frontier Program from the Korean Ministry of Education, Science and Technology through National Research Foundation. Contact: Dr. Sang Yup Lee, Distinguished Professor and Dean, KAIST, Daejeon, Korea (leesy@kaist.ac.kr, +82-42-350-3930)
2012.05.23
View 11725
KAIST hosts the first Can Satellite (Cansat) competition
Figure: The cansat is sent up into the air using a balloon and then separated at a certain height. The cansat slowly descends and sends terrestrial observation or atmospheric information back to earth. KAIST will host the first ever Cansat Competition Korea, in which students from different age groups can participate in building and testing the performance of their custom satellites. The Satellite Technology Research Center (SaTReC) at KAIST announced that it will take applications for the Cansat Competition Korea until May 25th. A cansat is a can-sized educational satellite that contains the basic elements of a real satellite. It is fired up to a few hundred meters in the air using balloons or small rockets and then separated like a real satellite, collecting data and sending the information back to earth. Cansat competitions are regularly held in the United States or Europe, where they have advanced space development programs, but this is the first time this competition will be held in Korea. The competition caters to different age groups through a cansat experience science camp for elementary and middle school students and a cansat competition for high school and college students. The science camp will be held from August 7th to 9th at KAIST and Sejong City and will include satellite education, visits to space development centers (KAIST Satellite Technology Research Center and the Korea Aerospace Research Institute), hand-on experience with basic cansat kits, and other various programs. The science camp will consist of a maximum of 20 teams comprised of students from fifth to ninth grade. Each team will have an advisory teacher and 3 to 4 students and can apply for the competition at no cost. The cansat competition will test high school and college students on their personally designed and built can satellites along with the creativity of their mission and developmental outcome. The preliminary review will choose a maximum of 15 teams, while the secondary review will select the 5 teams that will make the final competition based on their design presentation. On August 9th, these 5 teams will be evaluated on their technical ability, mission capacity and presentation skills. The winning team will be given the KAIST presidential award along with a trophy and prize money. Doctor Park from KAIST SaTReC explained that countries with advanced space technology actively support cansat competitions to expand the base of the field. He emphasized Korea’s need for regular cansat competitions to actively promote potential space researchers. More information on the competition can be found on the homepage (http://cansat.kaist.ac.kr) or at the KAIST SaTReC (042-350-8613~4)
2012.05.14
View 11439
Korea's First MOU between a University Education Volunteer Work Group and Local Government
- 200 Adolescents from Yuseong-gu to Receive Education Community Services Midam Scholarship committee which is composed of KAIST"s students and graduates, will draw up a contract that states that it will work together with the Yuseong-gu municipality for the development of the district education services on the 14th at the Yuseong-gu office. Both sides will together ▲mentor the local students, ▲cooperate to run and develop creative programs, ▲exchange work for the development of the KAIST Midam Scholarship Committee, ▲conduct various other projects. From now, the Midam Scholarship Committee will teach about 200 students in Yuseong-gu. The drawing of this contract has much meaning in that it is the first of its kind. The Midam Scholarship Committee was founded on 2009 by students in KAIST to teach math, english, and science to students from families with low income levels. This committee has made educational pacts with middle and high schools located in Daejeong such as Chungnam High School and Beobdong High School, and has not only taught these students but also has given scholarships to the selected students. On one hand, the Midam Scholarship Committee has also supported 10 students in KAIST who were in need with 300000won each on the 6th. This fund was raised through the donations of alumni and mentoring projects. The Midam Scholarship Committee has been recognized for its positive impacts on the society and has received an award from the Yuseong-gu municipality office.
2012.05.10
View 8420
KAIST Midam Institute Gives Donations Raised by Students
Midam Association which is consisted of students from KAIST (representatives Neung-in Jang and Minkyu Jin) has donated 300thousand won per person to ten KAIST students who are in need totaling a 3million won of donation. This donation was created through the mentoring activities of the members and donations from alumni and alumni corporations. Midam Association which was created on July of 2009 teaches math, science, and English to children from lesser off families. It started as a club created by undergraduate students and has now turned into an NGO where other local volunteers could participate. Currently as of March, there are ten schools including Bubdong Middle School, Jeon-min Middle School, Chungnam High School, and Jeonmin High School that have a pact with the Midam Association. The association has been conducting education assistance as well as giving donations to students in need. Last January, UNIST has benchmarked KAIST"s Midam Association and has started free education volunteer programs in association with Ulsan city. On the other hand, Midam Association of KAIST has been awarded a Certificate of Recognition by the Municipality of Yuseong-gu, Daejeon in recognition of their deed.
2012.05.10
View 7940
The output of terahertz waves enhanced by KAIST team
KAIST researchers have greatly improved the output of terahertz waves, the blue ocean of the optics world. This technology is expected to be applied to portable X-ray cameras, small bio-diagnostic systems, and in many other devices. Professor Ki-Hun Jeong"s research team from the Department of Bio and Brain Engineering used optical nano-antenna technology to increase the output of terahertz waves by three times. Terahertz waves are electromagnetic waves with frequencies between 100GHz to 30THz. They are produced when a femtosecond (10^-15 s) pulse laser is shone on a semiconductor substrate with photoconduction antennas, causing a photocurrent pulse of one picosecond (10^-12 s). Their long wavelengths, in comparison to visible light and infrared rays, give terahertz waves a high penetration power with less energy than X-rays, making them less harmful to humans. These qualities allow us to see through objects, just as X-rays do, but because terahertz waves absorb certain frequencies, we can detect hidden explosives or drugs, which was not possible with X-rays. We can even identify fake drugs. Furthermore, using the spectral information, we can analyze a material"s innate qualities without chemical processing, making it possible to identify skin diseases without harming the body. However, the output was not sufficient to be used in biosensors and other applications. Prof. Jeong"s team added optical nano-antennas, made from gold nano-rods, in between the photoconduction antennas and optimized the structure. This resulted in nanoplasmonic resonance in the photoconduction substrate, increasing the degree of integration of the photocurrent pulse and resulting in a three times larger output. Hence, it is not only possible to see through objects more clearly, but it is also possible to analyze components without a biopsy. Professor Jeong explained, "This technology, coupled with the miniaturization of terahertz devices, can be applied to endoscopes to detect early epithelial cancer" and that he will focus on creating and commercializing these biosensor systems. This research was published in the March issue of the international nanotechnology journal ACS Nano and was funded by the Korea Evaluation Institute of Industrial Technology and the National Research Foundation of Korea. Figure: Mimetic diagram of a THz generator with nano-antennas
2012.04.29
View 11283
KAIST signs strategic partnership with Global Techlink
On April 5th, KAIST signed an official strategic partnership with Global Techlink (GTL), an IP total service company that specializes in international patents and the technology trade, regarding the commercialization of technology (Tech-biz) at KAIST’s Munji Campus. Through this partnership, KAIST hopes to systematically manage not only patents and related technologies developed by the KAIST faculty, but also industrial developments based on business models. Until now, KAIST has concentrated on using its own human resources to transfer its patents and technologies to domestic companies. However, this agreement with GTL allows KAIST to target overseas tech-biz markets. GTL has agreed to help create, protect and strengthen patent rights stemming from KAIST’s research projects and ideas, as well as provide a unified management service extending from selling and licensing patents to venture incubation. KAIST’s vice-president of research, Professor Paik Kyung-Wook said that “We should protect patents developed by talented students and use them in the market to generate profit, but the fact of the matter is that universities do not have the necessary man power or know-how to do so”. He emphasized that this partnership with GTL will accelerate the global commercialization of technological assets developed by KAIST professors, students and researchers. Mr. Kim Jong-hyun, the president of Global Techlink, announced that GTL will provide KAIST’s outstanding intellectual property with a customized total consulting service based on the world’s largest and best technology database, which it monopolizes, and various other services. Also, using its network with global corporations and distributors, the veteran marketing specialists at GTL will support and carry out KAIST’s tech-biz, although the specifics are still being worked out.
2012.04.19
View 8583
10 Technolgies to Change the World in 2012: The Future Technology Global Agenda Council
The Future Technology Global Agenda Council which is under the World Economy Forum and which KAIST’s biochemical engineering department’s Prof. Sang Yeob Lee is the head of, chose the 10 new technologies that will change the world in year 2012. The ten technologies include: IT, synthetic biology and metabolic engineering, Green Revolution 2.0, material construction nanotechnology, systematic biology and the simulation technology of biological systems, the technology to use CO2 as a natural resource, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology. The technologies were chosen on the basis of the opinions various science, industry, and government specialists and is deemed to have high potential to change the world in the near future. The Future Technology Global Agenda Council will choose ten new technologies yearly starting this year in order to solve the problems the world now faces. The informatics systems that was ranked 1st place, sifts only the data necessary for decision making out of the overflowing amount of data. Much interest has been spurred at the Davos forum. The synthetic biology and metabolic engineering chosen is expected to play an important role in creating new medicines and producing chemical substances and materials from reusable resources. Biomass has also been chosen as one of the top ten most important technologies as it was seen to be necessary to lead the second Green Revolution in order to stably provide food for the increasing population and to create bio refineries. Nanomaterials structured at the molecular level are expected to help us solve problems regarding energy, food, and resources. Systematic biology and computer modeling is gaining importance in availing humans to construct efficient remedies, materials, and processes while causing minimum effects on the environment, resource reserves, and other people. The technology to convert CO2, which is considered a problem all over the world, into a useful resource is also gaining the spotlight Together with such technologies, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology are also considered the top ten technologies to change the world. Prof. Lee said, “Many new discoveries are being made due to the accelerating rate of technological advancements. Many of the technologies that the council has found are sustainable and important for the construction of our future.”
2012.04.04
View 10295
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 91