본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
NI
by recently order
by view order
2012 Intellectual Property Rights Award Ceremony Held
The 2012 Intellectual Property Rights Award Ceremony was held at Seoul KAIST Campus. Recipients of the award included former congressmen Kim Young Sun and Lee Jeong Hyuk, and Kim Boo Kyung researcher at Electronics and Telecommunications Research Institute also representing Vooz Ltd. that created the character POOCA. The Intellectual Property Rights Award is given to an individual or a group that succeeded in utilizing, protecting, creating, and establishment of its foundation including patent, copyright, and brand. Intellectual Property Rights is viewed as of importance for future national competitiveness. The Award is organized by the Korea Patent Attorneys Association, the Korea Association of Intellectual Property Services, and KAIST and are respectively core institutions in the training of Intellectual Property Rights Experts and the creation, utilization, and the protection of intellectual property. In addition the Award is also co-organized by the KAIST Graduate School of Intellectual Property Rights (established in cooperation with KAIST and the Korean Intellectual Property Office) and the total 20 million Won of prize money is funded by Korea Institute of Intellectual Strategy and Kim Ok Lan Foundation. The Award Ceremony was held with a special lecture by the recipients. It was stressed that the evaluation process was carried out with that the decision is a silent message to the society and is also a type of market signal. Director Ko Gi Seok (Presidential Council on Intellectual Property) revealed that the candidates’ impact on the strength of national intellectual property rights was thoroughly scrutinized. In the criteria of Creation of Intellectual Property, ETRI received the award in recognition of the institution’s successful patenting and commercializing of products of Korean R&D. ETRI created a total of 251 International Patents in cooperation with ITU, ISO, IEE, etc. and also participated in a total of 9 International Standard Patent Pool, showing its active Intellectual Property management. Such efforts ranked ETRI 1st in the United States Patent Evaluation performed by the US Patent Board in 2011 out of 237 institutions. In addition Recipient of the Intellectual Property Utilization criteria, VOOZ ltd.’s Kim Boo Kyung promised the free use of their character POOCA in ETRI’s automated Korean-English translator. Researcher Kim Boo Kyung was rewarded with the award in recognition of his contribution to the domestic economy and realization of the commercialization of a copy right through licensing. Former congressman Kim Young Son received an Award in the Foundation criteria in recognition of his efforts in the establishment of the Presidential Council on Intellectual Property and the Basic Blueprints for the Intellectual Property Law. Former congressman Lee Jeong Hyuk received the same award in recognition of standardization and streamlining Intellectual Property Rights Policies. His realization and pursuit of the establishment of a balanced growth based on law for the competitiveness of businesses was the driving force behind his accomplishments.
2012.10.16
View 10239
KAIST Evaluated 1st in Joong Ang Newspaper University Evaluation for 5 Consecutive Years
KAIST was evaluated 1st in the Joong Ang Newspaper University Evaluation scoring 241 points out of a total of 300 points. This is KAIST’s 5th consecutive year being ranked 1st by Joong Ang Newspaper’s University Evaluation. POSTECH, Yonsei University, Seoul National University, Sungkyunkwan University, and Korea University followed behind. The Joong Ang Newspaper University Evaluation started in 1994 and KAIST is the first university to be evaluated 1st for 5 consecutive years. KAIST scored high in education environment, finance, and professor research criteria. Joong Ang Newspaper evaluated 102 universities and based the evaluation on: education environment (90 points), globalization (50 points), professor research (100 points), and reputation (60 points).
2012.10.16
View 6975
2012 Times Higher Education Ranks KAIST a Record High of 68th
KAIST was evaluated as the 68th best university by the Times Higher Education, a English University Evaluation Body. The 2012 evaluation is 29 places higher than the 2011 evaluation. As a side note, KAIST was ranked a record high of 63rd in the world by Quacquarelli Symonds’ 2012 QS World University Evaluation.
2012.10.16
View 6844
College of Cultural Sciences Announces Results for 6th Best Paper Award
The College of Cultural Sciences cohosts with the EFL Program the Best Paper Award each semester. The Best Paper Awards went to Jo Hyeong Chan and Oh Shin Ah undergraduate students. The Best Paper Award was established in 2009 in order to encourage and improve the English writing skills of undergraduate students. The College of Humanities and Social Sciences opened up 69 English courses in Spring of 2012 and 14 papers were recommended by the respective professors as ‘best papers’. Out of these papers 2 were selected for First Prize and 4 were selected as Honorable Mentions. The two recipients’ papers were recommended by Professor Park Woo Seok (Topics in Philosophy).
2012.10.16
View 7017
KAIST 63rd in 2012 QS World University Ranking
KAIST was ranked 63rd in the 2012 World University Ranking conducted by British University Ranking Institution Quacquarelli Symonds. The result is an all-time high for KAIST and a quantum leap of 135 places from 198th in 2006. The criteria are: Student Evaluation (40%), Industry Evaluation (10%), Dissertation Citation per Professor (20%), Professor to Student Ratio (20%), Ratio of Foreign Students (5%), and Professor Ratio (5%). The most notable improvement was in the ‘Academic Reputation’ criteria where KAIST scored 85.1 points and recorded 68th in the world, an improvement of 17 places from last year. The Engineering College was ranked 24th, Natural Science College was ranked 48th, Biological Science College was ranked 110th, demonstrating that KAIST has now been established as a world class research oriented university. The 2012 QS World University Ranking ranked MIT as the best university in the world followed by Cambridge, Harvard, ULC, and Oxford. Domestically Seoul National University was ranked highest at 37th followed by KAIST (63rd), POSTECH (97th), Yonsei University (112th), Korea University (137th), and Sungkyunkwan University (179th) in the top 200 places.
2012.09.22
View 9086
Professor Yoon Dong Ki becomes first Korean to Receive the Michi Nakata Prize
Professor Yoon Dong Ki (Graduate School of Nano Science and Technology) became the first Korean to receive the Michi Nakata Prize from the International Liquid Crystal Society. The Awards Ceremony was held on the 23rd of August in Mainz, Germany in the 24th Annual International Liquid Crystal Conference. The Michi Nakata Prize was initiated in 2008 and is rewarded every two years to a young scientist that made a ground breaking discovery or experimental result in the field of liquid crystal. Professor Yoon is the first Korean recipient of the Michi Nakata Prize. Professor Yoon is the founder of the patterning field that utilizes the defect structure formed by smectic displays. He succeeded in large scale patterning complex chiral nano structures that make up bent-core molecules. Professor Yoon’s experimental accomplishment was published in the Advanced Materials magazine and the Proc. Natl. Acad. Sci. U.S.A. and also as the cover dissertation of Liquid Crystals magazine. Professor Yoon is currently working on Three Dimensional Nano Patterning of Supermolecular Liquid Crystal and is part of the World Class University organization.
2012.09.11
View 11281
Jellyfish removal robot developed
Professor Myung Hyun’s research team from the Department of Civil and Environmental Engineering at KAIST has developed a jellyfish removal robot named ‘JEROS’ (JEROS: Jellyfish Elimination RObotic Swarm). With jellyfish attacks around the south-west coast of Korea becoming a serious problem, causing deaths and operational losses (around 3 billion won a year), Professor Myung’s team started the development of this unmanned automatic jellyfish removal system 3 years ago. JEROS floats on the surface of the water using two long cylindrical bodies. Motors are attached to the bodies such that the robot can move back and forth as well as rotate on water. A camera and GPS system allows the JEROS to detect jellyfish swarm as well as plan and calculate its work path relative to its position. The jellyfish are removed by a submerged net that sucks them up using the velocity created by the unmanned sailing. Once caught, the jellyfish are pulverized using a special propeller. JEROS is estimated to be 3 times more economical than manual removal. Upon experimentation, it showed a removal rate of 400kg per hour at 6 knots. To reach similar effectiveness as manual net removal, which removes up to 1 ton per hour, the research team designed the robot such that 3 or more individual robots could be grouped together and controlled as one. The research team has finished conducting removal tests in Gunsan and Masan and plan to commercialize the robot next April after improving the removal technology. JEROS technology can also be used for a wide range of purposes such as patrolling and guarding, preventing oil spills or removing floating waste. This research was funded by the Ministry of Education, Science and Technology since 2010.
2012.08.29
View 11201
First Annual CanSat Idea Exhibition held
The Ministry of Education, Science, and Technology held the ‘CanSat’ Exhibition in order to increase interest and understanding of satellites in primary, secondary, and high school level students. The exhibition, hosted by KAIST Satellite Research Center and funded by Korea Aerospace Institute, was held in SaeJeong City. 90 primary, secondary school teams, 57 high school teams, and 14 university teams submitted their applications for participation. Of these teams 20 primary, secondary school teams, 5 high school teams, and 5 university teams were selected after thorough document valuation and presentation assessment. The 20 primary, secondary school teams participated in the science camp to gain firsthand experience in the construction and launch of a simple satellite system. The high school and university teams were evaluated by the level of completion of the task given and the level of creativity involved. The CanSat Exhibition has been held in aerospace powerhouses and this was the first time such an exhibition was held in Korea.
2012.08.21
View 8284
Successful development and analysis of mesoporous quasicrystal structures
Professor Osamu Terasaki’s research team from the EEWS Graduate School at KAIST successfully synthesized mesoporous quasicrystalline silica and developed a new method of analyzing its growth. The theory proposed by the team laid the foundation for the scientific examination of quasicrystal phenomena during the formation of micelles particles, a type of soft matter. The paper was published in the July edition of Nature magazine. Scientists have faced difficulty in systematically explaining the mesoporous quasicrystal structures that are found in solidified versions of soft matter systems. However, the theoretical foundation from this research is expected to help promote the research and development of new nano-structured materials. Mesoporous quaicrystals are soft matters that have high symmetry and a larger characteristic length scale than the nanoscale, thereby making it possible to develop materials that have controllable optical properties. This technology can be applied to the sustainable storage, use, and reproduction of energy. Professor Terasaki’s team succeeded in synthesizing mesoporous quasicrystalline silica and proved the formation of dodecagonal column-shaped crystals as well as dodecagonal, rotationally symmetric electron diffraction patterns near the crystals using Transmission Electron Microscopy. Quasicrystals are an abbreviation of ‘quasiperiodic crystals’ and have what is called the ‘third solid’ property; they have a structural arrangement that is between arranged crystal structures, such as metals, and non-crystalline structures, such as glass. This crystalline structure was only recently found, and the 2011 Nobel Chemistry Award was given to research in this field. When porous materials are synthesized into quasicrystals, the crystalline structures of the pores can be designed and controlled in any way, making it possible to create new materials for a wide range of fields. Professor Terasaki said that ‘The discovery of highly symmetric quasicrystals can lead to the alteration of a material’s optical properties, allowing the development of photonic crystals in the visible spectra.’ He also explained that this control of a material’s optical energy absorption could be the core technology behind energy harvesting. This research was jointly conducted by Professor Terasaki from the EEWS Graduate School at KAIST and Stockholm University in Sweden.
2012.08.01
View 8496
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 14222
Systems biology demystifies the resistance mechanism of targeted cancer medication
Korean researchers have found the fundamental resistance mechanism of the MEK inhibitor, a recently highlighted chemotherapy method, laying the foundation for future research on overcoming cancer drug resistance and improving cancer survival rates. This research is meaningful because it was conducted through systems biology, a fusion of IT and biotechnology. The research was conducted by Professor Gwang hyun Cho’s team from the Department of Biology at KAIST and was supported by the Ministry of Education, Science and Technology and the National Research Foundation of Korea. The research was published as the cover paper for the June edition of the Journal of Molecular Cell Biology (Title: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor). Targeted anticancer medication targets certain molecules in the signaling pathway of the tumor cell and not only has fewer side effects than pre-existing anticancer medication, but also has high clinical efficacy. The technology also allows the creation of personalized medication and has been widely praised by scientists worldwide. However, resistances to the targeted medication have often been found before or during the clinical stage, eventually causing the medications to fail to reach the drug development stage. Moreover, even if the drug is effective, the survival rate is low and the redevelopment rate is high. An active pathway in most tumor cells is the ERK (Extracellular signal-regulated kinases) signaling pathway. This pathway is especially important in the development of skin cancer or thyroid cancer, which are developed by the mutation of the BRAF gene inside the path. In these cases, the MEK (Extracellular signal-regulated kinases) inhibitor is an effective treatment because it targets the pathway itself. However, the built-up resistance to the inhibitor commonly leads to the redevelopment of cancer. Professor Cho’s research team used large scale computer simulations to analyze the fundamental resistance mechanism of the MEK inhibitor and used molecular cell biological experiments as well as bio-imaging* techniques to verify the results. * Bio-imaging: Checking biological phenomena at the cellular and molecular levels using imagery The research team used different mutational variables, which revealed that the use of the MEK inhibitor reduced the transmission of the ERK signal but led to the activation of another signaling pathway (the PI3K signaling pathway), reducing the effectiveness of the medication. Professor Cho’s team also found that this response originated from the complex interaction between the signaling matter as well as the feedback network structure, suggesting that the mix of the MEK inhibitor with other drugs could improve the effects of the targeted anticancer medication. Professor Cho stated that this research was the first of its kind to examine the drug resistivity against the MEK inhibitor at the systematic dimension and showed how the effects of drugs on the signaling pathways of cells could be predicted using computer simulation. It also showed how basic research on signaling networks can be applied to clinical drug use, successfully suggesting a new research platform on overcoming resistance to targeting medication using its fundamental mechanism.
2012.07.06
View 10518
New wireless charging device developed
The On-line Electric Vehicle (OLEV) developed by KAIST has made a step towards commercialization with the development of a more economic wireless charging device. Professor Chun-Taek Rim from the Department of Nuclear and Quantum Engineering at KAIST has developed a new I-shaped wireless charging device that differs from the pre-existing rail-type electricity feeder. This device can be modularly produced and requires relatively less construction, significantly reducing the cost of implementation. The KAIST OLEV is a new concept electric car that has a special electricity collecting device underneath it. The car’s battery is charged by magnetic fields produced from electric lines buried 15cm underneath the road. The vehicle was first tested in 2009, making it the first wireless electric car in the world. OLEV can be charged during stoppage time between traffic lights and receives real-time power when running. OLEV is currently in operation at the KAIST Munji Campus in Daejeon and is also being exhibited at the Yeosu Expo and Seoul Grand Park. The device itself has a charging capacity of 15kW, and the electricity is supplied through an electricity feeder with a width of 80cm with a space interval of 20cm. Despite being hailed as a technological breakthrough and revolutionary concept, KAIST OLEV has been criticized for problems in commercialization, due to the difficulties in installing wires beneath existing roads, which costs a considerable amount of money. The new I-shaped wireless charging device reduces the width of the electricity feeder by 10cm, a mere one-eighth of the size of the previous version, and greatly increases the charging power to 25kW. Furthermore, the left and right permissible space of automobiles has increased to 24cm and the magnetic field complies with the international design guidelines, making the OLEV safe for the human body. The reduction of the width has made the mass production of modules possible, making the installation of KAIST OLEV more economical and marketable. Professor Rim emphasized that compared with the existing rail-type electricity feeder, the new technology will need only one-tenth of the construction time and 80% of the cost, significantly improving OLEV’s constructability and workability. The research was published in the IEEE Transactions on Power Electronics last December, and Professor Rim was invited to talk at the Conference on Electric Roads & Vehicles, which was held in February in the United States, about the new technology.
2012.07.06
View 10809
<<
첫번째페이지
<
이전 페이지
51
52
53
54
55
56
57
58
59
60
>
다음 페이지
>>
마지막 페이지 73