본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
THE
by recently order
by view order
Interesting research results were published on the use of Twitter.
The number of “followers” on your Twitter account does not necessarily mean that “Your opinions matter much” to other people. A KAIST graduate researcher, Mi-Young Cha, joined an interesting project that studies the influence of a popular social media, Twitter. Most of Twitter users today consider the number of followers as a measurement of their influence on the social sphere. According to the research paper, however, this connection does not seem to standing together. For details, please click the link below for an article published by the New York Times. Dr. Cha received all of her post secondary education degrees in Computer Science, including her Ph.D. in 2008, from KAIST. Since 2008 till now, she has been a post doctoral researcher at Max Planck Institute for Software Systems (MPI-SWS) based in Germany. [New York Times Article, March 19, 2010] http://www.nytimes.com/external/readwriteweb/2010/03/19/19readwriteweb-the-million-follower-fallacy-audience-size-d-3203.html
2010.04.05
View 12210
New drug targeting method for microbial pathogens developed using in silico cell
A ripple effect is expected on the new antibacterial discovery using “in silico” cells Featured as a journal cover paper of Molecular BioSystems A research team of Distinguished Professor Sang Yup Lee at KAIST recently constructed an in silico cell of a microbial pathogen that is resistant to antibiotics and developed a new drug targeting method that could effectively disrupt the pathogen"s growth using the in silico cell. Hyun Uk Kim, a graduate research assistant at the Department of Chemical and Biomolecular Engineering, KAIST, conducted this study as a part of his thesis research, and the study was featured as a journal cover paper in the February issue of Molecular BioSystems this year, published by The Royal Society of Chemistry based in Europe. It was relatively easy to treat infectious microbes using antibiotics in the past. However, the overdose of antibiotics has caused pathogens to increase their resistance to various antibiotics, and it has become more difficult to cure infectious diseases these days. A representative microbial pathogen is Acinetobacter baumannaii. Originally isolated from soils and water, this microorganism did not have resistance to antibiotics, and hence it was easy to eradicate them if infected. However, within a decade, this miroorganism has transformed into a dreadful super-bacterium resistant to antibiotics and caused many casualties among the U.S. and French soldiers who were injured from the recent Iraqi war and infected with Acinetobacter baumannaii. Professor Lee’s group constructed an in silico cell of this A. baumannii by computationally collecting, integrating, and analyzing the biological information of the bacterium, scattered over various databases and literatures, in order to study this organism"s genomic features and system-wide metabolic characteristics. Furthermore, they employed this in silico cell for integrative approaches, including several network analysis and analysis of essential reactions and metabolites, to predict drug targets that effectively disrupt the pathogen"s growth. Final drug targets are the ones that selectively kill pathogens without harming human body. Here, essential reactions refer to enzymatic reactions required for normal metabolic functioning in organisms, while essential metabolites indicate chemical compounds required in the metabolism for proper functioning, and their removal brings about the effect of simultaneously disrupting their associated enzymes that interact with them. This study attempted to predict highly reliable drug targets by systematically scanning biological components, including metabolic genes, enzymatic reactions, that constitute an in silico cell in a short period of time. This research achievement is highly regarded as it, for the first time, systematically scanned essential metabolites for the effective drug targets using the concept of systems biology, and paved the way for a new antibacterial discovery. This study is also expected to contribute to elucidating the infectious mechanism caused by pathogens. "Although tons of genomic information is poured in at this moment, application research that efficiently converts this preliminary information into actually useful information is still lagged behind. In this regard, this study is meaningful in that medically useful information is generated from the genomic information of Acinetobacter baumannii," says Professor Lee. "In particular, development of this organism"s in silico cell allows generation of new knowledge regarding essential genes and enzymatic reactions under specific conditions," he added. This study was supported by the Korean Systems Biology Project of the Ministry of Education, Science and Technology, and the patent for the development of in silico cells of microbial pathogens and drug targeting methods has been filed. [Picture 1 Cells in silico] [Picture 2 A process of generating drug targets without harming human body while effectively disrupting the growth of a pathogen, after predicting metabolites from in silico cells]
2010.04.05
View 14627
New Text Book on Chemistry Published by KAIST Professor and Student
A chemistry textbook written in English and Korean will aid Korean students to learn General Chemistry in a global academic setting. Korean students majoring in chemistry and looking for an opportunity to study abroad will have a new, handy textbook that presents them with a practical introduction to an English speaking lecture on general chemistry. Aiming for advanced Korean high school and college/university students, the inter-language textbook is written by two incumbent professors teaching chemistry at a university in Korea and the US. The book will help Korean students prepare for a classroom where various topics of general chemistry are presented and discussed in English. Clear, collated sections of English and Korean text provide the student with sufficient explanation of the rudimentary topics and concepts. Composed of 15 chapters on the core subjects of General Chemistry, i.e., Stoichiometry and Chemical Reactions, Thermochemistry, Atomic Structure, and Bonding, the textbook includes essential English vocabulary and usage sections for each chapter; it also contains a pre-reading study guide on the subject that prepares the student for listening to a lecture. This section includes view-graph type slides, audio files, and follow-up questions the student can use to prepare for an English-speaking course. The various accompanying audio files are prepared to expose the student to English scientific dialogue and serve as examples for instruction at Korean secondary and tertiary schools. The book was coauthored by Korean and American scientists: A father and son, who have taught chemistry at an American and Korean university, wrote the book. Professor Melvyn R. Churchill at the State University of New York at Buffalo and Professor David G. Churchill at KAIST prepared all of the technical English text which was adapted from General Chemistry course lecture notes; the text was further shaped by original perspectives arising from many student interactions and questions. This English text was translated into Korean by Professor Kwanhee Lee from the Department of Life and Food Science at Handong Global University, who coauthored a previous preparatory book for Korean students in a different subject. He also supplied an important introductory section which serves as a general guide to the classroom student. Kibong Kim, a doctoral student in the Department of Chemistry at KAIST, helped in preparing the book as well. “This has been definitely a collaborative undertaking with an international academic crew and it underscores that the Korean internationalization in science is mainstream. Professors and a Korean student created a new book for Korean consumption and benefit,” Professor David G. Churchill says. ---------------------------------------------------------------------------------------- Bibliography: “How to Prepare for General Chemistry Taught in English” by David George Churchill, Melvyn Rowen Churchill, Kwanhee Lee & Kibong Kim, Darakwon Publishing, Paju, Republic of Korea, 2010, 400 pp, ISBN 978-89-5995-730-9 (1 Audio CD included)
2010.04.02
View 13485
Photonic crystals allow the fabrication of miniaturized spectrometers
By Courtesy of Nanowerk Photonic crystals allow the fabrication of miniaturized spectrometers (Nanowerk Spotlight) Spectrometers are used in materials analysis by measuring the absorption of light by a surface or chemical substance. These instruments measure properties of light over a specific portion of the electromagnetic spectrum. In conventional spectrometers, a diffraction grating splits the light source into several beams with different propagation directions according to the wavelength of the light. Thus, to achieve sufficient spatial separation for intensity measurements at a small slit, a long light path – i.e., a large instrument – is required. However, for lab-on-a-chip or microTAS (total analysis system) applications, the spectrometer must be integrated into a sub-centimeter scale device to produce a stand-alone platform. To achieve this, researchers at the Korea Advanced Institute of Science and Technology (KAIST) propose a new paradigm in which the spectrometer is based on an array of photonic crystals with different bandgaps. "Because photonic crystals refelct light of different wavelengths selectively depending on their bandgaps, we can generate reflected light spanning the entire wavelength range for analysis at different spatial positions using patterned photonic crystals," Seung-Man Yang, Director of the National Creative Research Initiative Center for Intergrated Optofluidic Systems and Professor of the Department of Chemical & Biomolecular Engineering at KAIST, tells Nanowerk. "Therefore, when the light source impinges on the patterned photonic crytals, we can construct the spectrum using the reflection intensity profile from the constituent photonic crystals." Photonic crystals – also known as photonic band gap material – are similar to semiconductors, only that the electrons are replaced by photons (i.e. light). By creating periodic structures out of materials with contrast in their dielectric constants, it becomes possible to guide the flow of light through the photonic crystals in a way similar to how electrons are directed through doped regions of semiconductors. The photonic band gap (that forbids propagation of a certain frequency range of light) gives rise to distinct optical phenomena and enables one to control light with amazing facility and produce effects that are impossible with conventional optics. To demonstrate this new concept based on patterned photonic crystals, Yang and his group used non-close-packed colloidal crystals of silica particles dispersed in photocurable resin. Due to the repulsive interparticle potential, monodisperse silica particles spontaneously crystallize into non-close-packed face-centered cubic (fcc) structures at volume fractions above 0.1. Therefore, the particle volume fraction determines both the lattice constant and the bandgap position. a) Optical image of an ETPTA film containing porous photonic crystal stripe patterns with 20 different bandgaps. b) Reflectance spectra from the 20 strips. c) Optical microscope image of the middle region with the parallel stripe pattern (denoted as white-dotted box in a). d) Cross-sectional SEM images of first, sixth, eleventh and seventeenth strips. The scale bars in a, c and d are 1 cm, 2mm and 2 µm, respectively. (reprinted with permission from Wiley-VCH Verlag) Reporting their findings in a recent issue of Advanced Materials ("Integration of Colloidal Photonic Crystals toward Miniaturized Spectrometers"), the KAIST team has demonstrated the integration of colloidal photonic crystals with 20 different bandgaps into freestanding films (prepared by soft lithography), and their application as a spectrometer. Yang explains that the team was able to precisely control the photonic bandgap by varying the particle size and volume fration. "The prepared colloidal composite structures showed high physical rigidity and chemical resistivity" he says. "The composite structure is suitable for spectroscopic use due to the small full widths at half maximum (FWHMs) of the reflectance spectra, which mean that there is little overlap of the reflectance spectra of neighboring photonic crystal strips." "On the other hand" says Yang, "porous photonic crystals showed large FWHMs and high reflectivities, which should prove useful in many practical photonic applications that require high optical performance and physical rigidity as well as simple and inexpensive preparation." In addition to fabricating miniaturized spectrometers, which can for instance be integrated into small lab-on-a-chip devices, these integrated photonic crystals can be potentially used for tunable band reflection mirrors, optical switches, and tunable lasing cavities. Moreover, patterned photonic crystals with RGB colors are well-suited for use in reflection-mode microdisplay devices. Yang points out that, although the spectrometric resolution can be reduced by employing the smaller bandgap interval and photonic bandwidth, there is a limitation. "Now, we are studying photonic crystals with continuous modulation of bandgap position. We expect that the photonic crystals can reduce the resolution to 0.01 nm." By Michael Berger. Copyright 2010 Nanowerk
2010.03.17
View 13053
President Suh Hosted Press Conference with Seoul-based Correspondents, on March 9, 2010
President Suh Hosted Press Conference with Seoul-based Correspondents, on March 9, 2010 President Nam-Pyo Shu had a press conference with foreign correspondents based in Seoul, South Korea, on March 9, 2010 at Seoul Foreign Correspondents’ Club (SFCC). Prior to the conference, the president and correspondents attended a ceremony for the completion of Online Electric Vehicles (OLEV) that carries passengers to look around the amusement park, Seoul Grand Park, in Gewacheon City. OLEV was developed and built by KAIST. Following President Suh’s opening speech, a questions and answers (Q&A) session between the president and reporters proceeded. In his opening speech, President Suh said electric vehicles are an alternative to conventional automobiles with combustion engines, and in order to manufacture affordably priced electric vehicles on a large scale, their charging should be streamlined. In response, KAIST has come up with the online electric vehicle concept. He added, without installing separate charging stations, OLEV receives electric power from the cables buried underground while driving, idling, or parking. Its connection to a power source is non-contact. President Suh expressed his excitement for demonstrating OLEV at Seoul Grand Park that its system works as KAIST has designed and predicted. He showed his confidence that KAIST is indeed at the stage to implement OLEV in Seoul City soon and hoped to demonstrate it at the upcoming G-20 Summit to be held in November 2010 in Seoul City. During the Q&A session, reporters cited the construction of OLEV at the amusement park and mainly asked about a possibility of its commercialization. Other topics, they also questioned about, were hurdles related to the development and commercialization of OLEV; level of cooperation received from industries and central/local governments; technological breakthroughs and accomplishments; future development plans for the commercialization; and reactions from the public and government. Media outlets participated in the conference were Reuters, AFP, the International Herald Tribune, ABC News, Bloomberg News, Businessweek, Voice of America, Sankei Shimbun, and etc.
2010.03.16
View 9780
KAIST Commencement 2010 was held on February 26, 2010.
A total of 2,205 are the newly conferred degree holders: 479 for Ph.D., 988 for Master’s, and 738 for B.S. degrees. Since its foundation in 1971, KAIST has so far produced 38,882 graduates. KAIST held the 2010 graduation ceremony on February 26, 2010 at its newly built place, called “Sports Complex Building.” Approximately 2,500 guests including Minister Byung-Man Ahn, Education, Science and Technology Ministry; Chairman Mun-Sul Jeong, KAIST Board of Trustees; representatives from the KAIST alumni; graduating students; and faculty joined the ceremony to celebrate the commencement. Honorary Doctorates At the ceremony, KAIST has conferred four honorary doctorate degrees in recognition of recipients’ contribution to the advancement of science and technology and development of science and engineering education in Korea and the world. The recipients were Arden L. Bement Jr., Director of US National Science Foundation; Lars Pallesen, President of Technical University of Denmark; Donald C.W. Kim, Chairman of AMKOR A&E, Inc.; and Beang-Ho Kim, Chairman of Seojeon Farm. Graduation Honors: President’s List Dong-Han Kim, majoring in Mathematical Sciences, College of Natural Science, was nominated as President’s List. He received an award for an outstanding academic achievement from the Minister of Education, Science and Technology and gave a gradation speech on behalf of the graduating class. Birthplace of Promising Young Scientists in Korea KAIST has earned a reputation for training the next generation of young scientists in Korea, and its 2010 Commencement has confirmed such fame. Among 479 Ph.D. degree holders, 151 (31%) students are in their 20s. The youngest who has received a doctoral degree is Jin-Ah Lee, graduating from College of Life Science and Bioengineering. Commencing International Students Among international students graduating this year, two students from India received their doctoral degrees in Biological Sciences: Kataru Raghu Prasad and Chaya Mohan. They are a married couple and now both postdoctoral researchers, working at KAIST labs. Wearing academic regalia and standing together to take a picture, the couple said, “We would definitely recommend KAIST to prospective international students because it offers the best education and research facilities comparable to those of any leading universities in the world. With the knowledge and experience acquired from studying at KAIST, we hope to contribute to the development of our country in the future.”
2010.03.04
View 13648
Future of Electric Automobile Glimpsed from KAIST
Etnews.co.kr. printed an interview with Professor Edward A. Lee, from the Department of Electrical Engineering and Computer Sciences, University of California in Berkeley, who visited KAIST to attend the 2010 International Workshop on Information Technology (IT) Convergence. During the workshop, Professor Lee had a chance to ride KAIST’s Online Electric Vehicle (OLEV), and etnews.co.kr. asked him about his impressions. Article published on Friday, February 19, 2010 (For the Korean article, please click the link at http://www.etnews.co.kr/news/detail.html?id=201002190158) The below is a translation from the Korean text. ----------------------------------------- Reported by Hee-Bum Park (hbpark@etnews.co.kr) "Future of Electric Automobile Glimpsed from KAIST"s Online Electric Vehicle Project," said Professor Lee. Distinguished Professor Edward A. Lee, from the Department of Electrical Engineering and Computer Sciences, University of California in Berkeley, expressed his impressions after a ride on KAIST’s Online Electric Vehicle. “KAIST’s Online Electric Vehicle (OLEV) really grabs my attention because the vehicle receives its needed electricity from a cable buried underground, not from batteries. Still, many challenges lie ahead for the electric vehicle to be commercialized, but I think, today, I saw the future of electric vehicles from the KAIST project,” explained Professor Lee. Professor Lee came to Daejeon to attend the “2010 International Workshop on Information Technology (IT) Convergence,” which was held on February 19, 2010 at KAIST’s Information and Communication Convergence (ICC) Campus. “I rode the bus and saw its instrument panel, which displays figures of electricity picked up from the ground. The bus presents the possibility of an electric car that can actually be built in the near future,” added Professor Lee. Professor Lee, however, pointed out that a number of issues should be addressed beforehand to commercialize OLEV, such as public concerns about magnetic waves, the economic impact of laying power strips underground, and battery efficiency as an alternative to petroleum based fuel. Nonetheless, he said that given people’s increased awareness of the problems associated with CO2 emissions, OLEV’s development is timely. “As far as I know, there has been no research in the US to develop an electric car that receives electricity from cables buried beneath the road. It is creative and ambitious for KAIST to try to find the technological breakthrough necessary for the development of electric cars,” Professor Lee stated. Professor Lee further commented, “So far, batteries on electric cars are heavy and bulky, and they require frequent recharging. I think KAIST has provided a solution to address this issue.” Graduating from Yale University and Massachusetts Institute of Technology (MIT), Professor Lee earned his doctoral degree in Electrical Engineering and Computer Sciences from UC Berkeley. He worked for Bell Telephone Laboratories in Holmdel, New Jersey.
2010.03.03
View 12499
A Breakthrough for Cardiac Monitoring: Portable Smart Patch Makes It Possible for Real-time Observation of Heart Movement
Newly invented device makes the monitoring easier and convenient. Professor Hoi-Jun Yoo of KAIST, Department of Electrical Engineering, said that his research team has invented a smart patch for cardiac monitoring, the first of its kind in the world. Adhesive and can be applied directly to chest in human body, the patch is embedded with a built-in high performance semiconductor integrated circuit (IC), called Healthcare IC, and with twenty five electrodes formed on the patch’s surface. The 25-electrodes, with a capability of creating various configurations, can detect cardiac contractions and relaxations and collect electrocardiogram (ECG) signals. The Healthcare IC monitors ECG signals and sends the information to a portable data terminal like mobile phones, making it possible for a convenient, easy check up on cardiac observations. The key technologies used for the patch are the Healthcare IC that measures cardiovascular impedance and ECG signals, and the electronic circuit board made of four layers of fabric, between which electrodes, wireless antenna, circuit board, and flexible battery are installed. With the P-FCB (Planar Fashionable Circuit Board) technology, the research team explained, electrodes and a circuit board are directly stacked into the fabric. Additionally, the Healthcare IC (size: 5mm x 5mm), which has components of electrode control unit, ECG and cardiovascular resistance detection unit, data compression unit, Static Random Access Memory (SRAM), and wireless transmitter receiver, is attached on the fabric. The Healthcare IC is operated by an ultra-low electrical power. Like a medicated patch commonly used to relieve arthritis pains, the surface of smart patch is adhesive so that people can carry it around without much hassle. A finished product will be 15cm x 15 cm in size and 1mm high in thickness. The Healthcare IC can measure cardiovascular impedance variances with less than 0.81% distortion in 16 different configurations through differential current injectors and reconfigurable high sensitivity detection circuitry. “The patch will be ideal for patients who suffer a chronic heart disease and need to receive a continuous care for their condition. Once commercialized, the patch will allow the patients to conduct a self-diagnosis at anytime and anywhere,” said Yan Long, a member of the research team. There has been a continuously growing demand worldwide since 2000 for the development of technology that provides a suitable healthcare management to patients with a chronic heart disease (e.g., cardiovascular problems), but most of the technology developed today are only limited to monitoring electrical signals of heart activity. Cardiovascular monitors, commonly used at many of healthcare places nowadays, are too bulky to use and give uncomfortable feelings to patients when applied. Besides, the current monitors are connected to an electrical line for power supply, and they are unable to have a low power communication with an outdoor communication gadget, thus unavailable for wide use. Professor Yoo gave his presentation on this new invention at an international conference, International Solid-State Circuits Conference, held on February 8-10 in San Francisco. The subject of his presentation was “A 3.9mW 25-electorde Reconfigurable Thoracic Impedance/ECG SoC with Body-Channel Transponder.” (Picture 1) Structure of Smart Patch (Picture 2) Smart patch when applied onto human body (Picture 3) Data received from smart patch (Picture 4) Healthcare IC
2010.02.17
View 13728
Master of Science in Intellectual Property: First Class Starts on Saturday, February 6, 2010
Newly Established, Postgraduate Course for Master of Science in Intellectual Property First class starts on February 6th, 2010 In conjunction with Korean Intellectual Property Office (KIPO), KAIST has established a new postgraduate course for a master of science in intellectual property (IP). 41 students have enrolled the course, and its first class will begin February 6th, 2010. With a diverse professional background, the first-year students came from private businesses, IP service industry, and public organizations. Globally well-known companies—Samsung Electronics, LG Electronics, and the Pohang Iron and Steel Company (POSCO)—and mid-sized companies have offered scholarships to support the new M.S. Program. Business and industry in Korea have recognized the increasingly important role of intellectual property in a modern economy and showed a strong interest in developing workforce specialized in subjects such as, but not limited to, patent law, copyright and designs law, trade mark law, unfair competition, anti-trust law, competition law, and trade secret law. Prosecutor Chan-Gi Na from Seoul Central District Prosecutor’s Office said, “I’ve applied for the master program at KAIST because I wanted to learn more about intellectual property in greater depth. Through the coursework, I hope to enhance my knowledge on the subjects and use it for the protection of Koreans’ IP related rights and the development of our nation’s IP industry.” Assistant Manager Jin-Hong Bae from Samsung Securities, Inc. said, “Since the capital market law becomes effective, the need for developing new financial products or services in our finance market has rapidly grown. We no longer can make our financial products by simply copying or ripping off ideas from others. It’s a must practice, not an option, to set up a system under which we are able to protect our IPs.” “I would like to become an expert in our finance market, who really knows how to commercialize intellectual property assets into benefits, so any know-hows or ideas accumulated from years of working in the field can be registered and protected,” added Mr. Bae. KAIST’s Mater Program for intellectual property is designed for engineers who wish to acquire the skills required to play a leading role in the field. These engineers, KAIST anticipates, will establish and execute business strategies to protect intellectual property, generate added values for a company, and effectively respond against patent related claims. The intellectual property will seize up to 90% of business values to be generated in the 21st century. KAIST has long foreseen the need for training top-notch engineers in intellectual property. Combined with multidisciplinary approach to engineering, law, and management, the new M.S. Program will provide students with a variety form of classes to assist them in getting a practical knowledge as needed based on their interests and career aspirations. Examples of the classes are workshops on the change in technology trends—i.e., information technology (IT), environmental technology (ET), and bio technology (BT); standardization of intellectual property and value assessment; and patent law related claims. “All professors involved in the course are experts who are equipped with hands-on experiences in working on intellectual property for a long time at government agencies, companies, and law firms,” Professor Chul-Ho Kim, responsible for overseeing the entire program, said. He also expressed his confidence that “We have set up an academic system to induct highly qualified professionals and engineers, capable of handling all aspects of intellectual property related issues, into work places. Our coursework encompasses technology, research and development (R&D), and management, and students who complete the program will be ready to tackle down any intellectual property matters in the 21st century.” Freshmen convocation for the IP M.S. Program is scheduled on February 20th at KAIST, and President Nam Pyo Suh and Commissioner Jung-Sik Koh of Korean Intellectual Property (KIPO) will attend the event.
2010.02.04
View 12724
Opening Ceremony Held on February 3, 2010 for Intellectual Property Training Center
KAIST Opened Training Center for Young Entrepreneurs Commissioner Jung-Sik Koh of Korean Intellectual Property Office (KIPO) and KAIST faculty members including Soon-Hong Jang, Vice President of Operations and Kwang-Hyung Lee, Dean of Academic Affairs Office, joined an opening ceremony held on February 3rd, 2010 to launch a training center for the next generation entrepreneurs who will lead the intellectual property (IP) industry in Korea. The training center was built in cooperation with KIPO to educate and support young entrepreneurs and prepare them to become tomorrow’s IP business leaders like Bill Gates of Microsoft and Google’s founders, Larry Page and Sergey Brin. Going through a vigorous selection process, a total of 101 students (51 for intermediate and 50 for advanced level) were chosen last December for an orientation program that will begin February 3rd and continue through February 5th. In addition to the training center at KAIST, KIPO supported to launch another training center at the Pohang University of Science and Technology (POSTECH), which has been up and running since January 27th, 2010.
2010.02.04
View 12526
President Nam Pyo Suh of KAIST discussed cooperation with KUSTAR on the training of skilled manpower for research and development (R&D)
Representatives from Korea Advanced Institute of Science and Technology (KAIST), Khalifa University of Science, Technology and Research (KUSTAR), Emirate Nuclear Energy Corporation (ENEC), and the Institute of Applied Technology (IAT) had a meeting on mutual cooperation at the Intercontinental Hotel in Abu Dhabi, the United Arab Emirates (UAE), on January 14, 2009. Participants of the meeting were President Nam Pyo Suh of KAIST, President Arif Sultan Al Hammadi of KUSTAR, President Mohamed Al Hammadi of ENEC, and Director General Abdullatif Mohamed Al Shamsi of IAT. A press conference on the training of skilled manpower for research and development (R&D) in the UAE followed afterwards. At the end of December in 2009, a Korean consortium led by Korea Electric Power Corporation (KEPCO) beat bids from its competitors to construct four nuclear power plants in the UAE. Representing the consortium, Minister Kyung Hwan Choi of Knowledge Economy Ministry signed a comprehensive agreement with KUSTAR and the Institute of Applied Technology (IAT) for the delivery of nuclear power plants. On his visit, President Suh discussed with KUSTAR the agreement above in greater detail on subjects, where KAIST renders its cooperation, such as research collaboration, university degree program, and training to produce qualified personnel necessary for the development of UAE’s nuclear energy industry. On research collaboration, sharing its expertise and knowledge accumulated years from the operation of academic and research programs, KAIST agreed to provide cooperation to KUSTAR in developing the latter as a leading science, technology, and research university in ten years through mutual activities such as research collaborations, recruitment and exchange of outstanding researchers and graduate students, expansion of research facilities, and creation of major research policies. Furthermore, in support of nuclear energy program in the UAE, KAIST agreed to develop a joint research program in nuclear engineering and exchange faculty members and students for research collaboration. On a university degree program, KAIST agreed for mutual cooperation to launch academic programs at KUSTAR, covering BSc, MSc, and PhD degrees to specialize in areas such as mechanical engineering, electrical engineering, nuclear engineering, biomedical engineering, nano technology, science, and information technology. To that end, KAIST will dispatch its faculty to KUSTAR; provide assistance in developing curriculum and teaching materials; and exchange students for research collaboration. President Arif of KUSTAR mentioned that the university will cooperate with the relevant institutions in Korea, i.e., Korea Development Institute (KDI) and the Korea Institute of Nuclear Safety (KINS), to train skilled workers required for the development of nuclear energy program in the UAE. He also added, “These cooperative programs will introduce more educational opportunities to our students, and as a result, they can make greater contributions to the development of our nation’s future technologies in various areas. Our students will have a chance to study a broad range of academic subjects through partnership made with the Republic of Korea, and I expect to see improvements in our engineering programs by integrating KAIST’s state-of-the-art academic courses into our system.” President Arif expressed his hope “to increase cooperation beyond the agreement made between the two countries, like allowing more exchanges and interactions with KAIST for the development of science and technology in Korea and the UAE.” “Establishing mutual cooperation between KAIST and KUSTAR is a historic event not only for our two universities but also for our two countries. The two universities will make a great contribution to the improvement of the future of humanity by working together to solve the most important, difficult issues faced in the 21st century,” said President Suh. He also said that “all members of KAIST community will make our utmost efforts to advance the quality of education in two schools and to implement innovative researches through mutual cooperation.” KUSTAR, a national university in the UAE, was founded on February 13, 2007 by a mandate of the current President Shaikh Khalifa Bin Zayed Al Nahyan to create a higher education institute. KUSTAR has been building its permanent campus in Abu Dhabi, the capital of UAE since establishment and merged with the campus in Sharjah (formerly known as Etisalat University College with 18 years of history) in 2008. The University offers education and research programs in five disciplines of engineering, logistics and management, health science, homeland security, and applied science. There are more or less 30 foreign accredited universities set up in the UAE from countries like the US, UK, Australia, France, Ireland, and Canada. Examples of such, among other things, are New York University Abu Dhabi campus and Middlesex University Dubai campus. Many of the foreign universities in the UAE, however, have colleges of pharmacy, computer science, aviation, management information, fashion design, business management, and medical science including Harvard Medical School Dubai Center, but not many in science and research. Therefore, KAIST’s assistance in KUSTAR’s endeavor to become a leading science and research university in the UAE is timely. The current government of UAE anticipates, with a great interest, to see a leading science and research intuition built in their nation. Attachment: Current Status of Universities in the UAE as of 2009 Background Information The United Arab Emirates (UAE) is a federation of seven emirates (Abu Dhabi, Dubai, Sharjah, Ajman, Umm al-Quwain, Ras al-Khaimah, and Fujairah) situated on the Arabian Peninsula, which borders with Oman and Saudi Arabia. The UAE has the world"s sixth largest oil reserves. As of 2008, its gross domestic product is $2,621,000.5 million and its nominal per capita gross domestic product is $5 5,028, becoming one of the most developed economies in the Middle East. The UAE’s total population as of the said year is 4,760.4 thousand, and its purchasing power per capita is 40th largest in the world. The UAE’s Human Development Index for Asian continent is relatively high, ranking 31st globally. In 1985, the UAE launched its own airline, Emirates Airline, which has become one of the fastest growing airlines in the world. The Emirates Airline is a sponsor for Arsenal soccer club. The Republic of Korea established full diplomatic relations with the UAE in June of 1980. On December 27, 2009, a Korean consortium led by Korea Electrical Power Corporation (KEPCO) signed a contract with the UAE to build nuclear power plants.
2010.01.15
View 15103
Prof. Lee"s Team Succeeds in Producing Plastics Without Use of Fossil Fuels
A team of scientists led by Prof. Sang-Yup Lee of the Department of Biological Sciences at KAIST have succeeded in producing the polymers used for everyday plastics through bioengineering, rather than through the use of fossil fuel based chemicals, the university authorities said on Tuesday (Nov. 24). This groundbreaking research, which may now allow for the production of environmentally conscious plastics, has been published in two papers in the journal Biotechnology and Bioengineering. Polymers are molecules found in everyday life in the form of plastics and rubbers. The team consisted of scientists from KAIST and Korean chemical company LG Chem focused their research on polylactic acid (PLA), a bio-based polymer which holds the key to producing plastics through natural and renewable resources. "The polyesters and other polymers we use everyday are mostly derived from fossil oils made through the refinery or chemical process," said Lee. "The idea of producing polymers from renewable biomass has attracted much attention due to the increasing concerns of environmental problems and the limited nature of fossil resources. PLA is considered a good alternative to petroleum based plastics as it is both biodegradable and has a low toxicity to humans." Until now PLA has been produced in a two-step fermentation and chemical process of polymerization, which is both complex and expensive. Now, through the use of a metabolically engineered strain of E.coli, the team has developed a one-stage process which produces polylactic acid and its copolymers through direct fermentation. This makes the renewable production of PLA and lactate-containing copolymers cheaper and more commercially viable. "By developing a strategy which combines metabolic engineering and enzyme engineering, we"ve developed an efficient bio-based one-step production process for PLA and its copolymers," said Lee. "This means that a developed E. coli strain is now capable of efficiently producing unnatural polymers, through a one-step fermentation process," This combined approach of systems-level metabolic engineering and enzyme engineering now allows for the production of polymer and polyester based products through direct microbial fermentation of renewable resources. "Global warming and other environmental problems are urging us to develop sustainable processes based on renewable resources," concluded Lee. "This new strategy should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources".
2009.11.30
View 13893
<<
첫번째페이지
<
이전 페이지
31
32
33
34
35
36
37
38
39
40
>
다음 페이지
>>
마지막 페이지 46