본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ION
by recently order
by view order
Great Success!: 2011 Wearable Computer Contest
The 2011 Wearable Computer Contest (WCC) was held on the 28th and 29th of November at Seoul COEX. The WCC is hosted by KAIST and Korea Next Generation Computing Society and is an annual event. A wearable computer allows the user to freely use the computer even a moving environment and involves the miniaturization, weight lightening to incorporate the computer into clothing. It is the fusion of IT technology and fashion and is opening new fields like entertainment, healthcare and other forms of fashion culture. The competition selected 10 teams out of the 57 teams that applied that will participate in the finals. The selected teams have to use smartphones to create a wearable computer that detects and uses the biorhythm of the wearer. A staff member commented that the requirement to use biorhythm reflected in many teams entering products related to health and safety, and body and entertainment. The most notable of the products entered was the outfit that prevents bicycle accidents. The LED attached on the back shows the direction the bicycle is traveling, or if it is stopping and uses the smartphone as a camera to show the cyclist what’s going on behind him. Other interesting products included a product that turned clothes into a movie theater. Whilst watching movies on the smartphone, sensors attached to the clothing give out vibrations, water vapor, smoke effect; essentially brining the 4D movie experience to each person. In addition products like ▲LED jacket that turns music into light and vibration ▲a prosthetic arm using an electromyogram to move it ▲an exercise suit that detects regional exercise load and helps design a balanced exercise regime. Kolon Industries Ltd. Provide the clothing for the finalists and the team that receives Kolon Special Award will be given the opportunity to commercialize the product.
2012.01.31
View 8076
Professor Jang Soon Heung Appointed International Consultant of the Fukushima Nuclear Disaster Task Force
The Japanese government appointed Professor Jang Soon Heung (department of Nuclear and Quantum Engineering) as the International Consultant to the Fukushima Nuclear Disaster Task Force. Professor Hatamura Yotaro of the Tokyo University is the head of the task force and is tasked with finding out the cause and extent of damage of the disaster and minimize social cost and expansion of damage along with prevent a similar disaster from occurring. The International Consultants will independently advise and look over the findings of the task force. The members include: Professor Jang Soon Heung (Professor of KAIST), Richard A. Meserve (Carnegie Research Center Director/Former Chairman of Nuclear Regulatory Commission), Andre-Claude Lacoste (Chairman of French Nuclear Safety Regulatory Commission), and Lars-Eirk Holm (Secretary General of Sweden Health and Welfare).
2012.01.31
View 7910
'Scientist-Engineer of the Month' for December: Professor Choi Joon Ho
Professor Choi Joon Ho (department of Biological Sciences) was made ‘Scientist-Engineer of December’ for his discovery of new gene (twenty-four) that helps biorhythm and proving that this gene helps control biorhythm. Professor Choi published 100 dissertations over the past 25 years and made significant advancements in the field of molecular virus and neurobiology. In 1995 Professor Choi uncovered the fact that the NS3 protein in C type hepatitis function as RNA helicase thereby opening the path to developing a cure for C type hepatitis; this is an international patent with Chiron corporation. The result was published in Biochemical and Biophysical Research Communications Journal and was the most domestically referred to dissertation in biological sciences in 1999. In addition Professor Choi published in Nature magazine in 1999, a dissertation that uncovered the fact that the DNA of papillomar virus has another protein (hSNF5) that direct it apart from ordinary proteins. In 2000~2005 Professor Choi published many dissertations in journals like Immunity, Cancer Research, Molecular and Cellular Biology, Oncogene, Journal of Virology, and etc. Professor Choi screened over 10,000 species of pomace fly mutations and discovered the twenty-four gene that affects the biorhythm of pomace flies. He analyzed this gene further and found a new function that was different from known biorhythm mechanisms. This research allowed a better understanding of biological clock of pomace flies and therefore was another step towards better understanding the control mechanism of human biological clock.
2012.01.31
View 8825
Information Sharing Webzine "You'reKA"
KAIST will be opening “You’reKA” to improve communication between staff members and between KAIST family members. “You’reKA” will primarily deal with school policies, research successes, news of KAIST family members, opinions, and other on, off campus news. “You’reKA” is a shortened form of “You are KAIST” and is a homonym of ‘Eureka’ an expression used for scientific discovery and is supposed to instill pride as KAISTians. The webzine is set to be opened in January of this year and will showcase 5 menus: “We Ask KAIST the Way”, “KAIST Report”, “Issue Briefing”, “Opinion” and “You”. “We Ask KAIST the Way” introduces messages from the President and Vice President of KAIST and is a corner where honest opinions regarding the university’s vision and leadership are shared. It will be run as a Q&A corner that includes major publications and comments along with interviews, external experts, and staff members. Under the “KAIST Report” menu, there will be ‘KAIST Today’ section where up to date research and experiment successes are posted, and a ‘KAIST Yard’ where various event information and news of KAIST members are shared. “Issue Briefing” will introduce an overall assessment of various university management policies and issues and provide a complete scan of information. “Opinion” will allow visitors to the webzine to read up on various perspectives and comments from Professors and experts on Science and Technology. The “You” menu will introduce various stories, activities, and expertise of KAIST staff members and their families. “You’reKA” is expected to bring the campus closer together and provide an agora of sorts where ideas can be exchanged and bring down the differences between each member of KAIST.
2012.01.31
View 7264
Professor Lee Jae Kyu : Appointed Fellow at Association of Information Systems
Professor Lee Jae Kyu of the Graduate School of Information Media Management was made Fellow of the Association of Information Systems. Professor Less was the Chief Editor of Electronic Commerce Research and Applications, Chairman of Asia Pacific Information System Symposium, and Chairman of Korea Academy of Management Information, in addition to Chairman of the Academy of Korea Intelligence Information System. The ‘Electronic Commerce’ co-written by Professor Lee is being used as primary MBA textbook in many universities around the world. Homepage : http://www.business.kaist.ac.kr/faculty/jklee/
2012.01.31
View 8513
Closer to the Dream: Graphene
A technique that allows easy and larger observation area of graphene’s crystal face was developed by Korean Research Team. The research team, led by Professor Jeong Hui Tae (KAIST), consists of Doctorate candidate Kim Dae Woo, Dr. Kim Yoon Ho (primary author), Doctorate candidate Jeong Hyun Soo. The research is supported by WCU (World Class Research University) Development Plan, Mid-Aged Researcher Support Business and was published in the online edition of Nature Nanotechnology. (Dissertation: Direct visualization of large0area graphene domains and boundaries by optical birefringency) Professor Jeong’s team used the optical property of the liquid display used in LCD to visualize the size and shape of the single crystals along a flat surface. The visualization of the single crystal allowed the measurement of a near theoretical value of electrical conductivity of graphene. Graphene has great electrical conductivity, transparent, mechanically stable, flexible, and is therefore regarded as the next generation electrical material. However the polycrystalinity of graphene meant that the actual electrical, mechanical properties were lower than the theoretical values. The reason was thought to be because of the size of the crystal faces and boundary structures. Therefore, in order to create graphene that has good properties, observing the domain and boundary of graphene crystal faces is essential. The new technique developed by the research team is another step towards commercializing transparent electrodes, flexible display, and electric materials like solar cells.
2012.01.31
View 9593
MOU: KAIST-Korea Internet & Security Agency
KAIST signed a MOU with the Korea Internet & Security Agency for the development of IT and International Security. As a result of the MOU interaction in ▲Exchange of personnel and materials for cooperative research for information protection ▲Information protection policy and technology ▲Education and training for developing information protection personnel, will be increased. Director of Cyber Security Research Center Joo Dae Joon commented, “Cyber-attack on national infrastructure like DDOS attacks can threaten the nation’s system” and that “the two institutes will establish a response system against cyber-attacks and train experts in information protection”.
2012.01.31
View 6947
City of McAllen, Texas Adopts OLEV Technology
KAIST will be exporting the OLEV technology to the United States for the first time since its development. The city of McAllen of Texas will be stationing 3 OLEV buses in the 10 mile (16km) route from 2013 from OLEV Technology Corporation. The OLEV Technology Corporation based in Massachusetts and is a venture company that KAIST has 30% share of and has the OLEV technology. The corporation has sole license in commercialization of OLEV in the United States. The OLEV technology has been commercialized in the city of Seoul since July of 2011. But this is the first instance of foreign implementation of the OLEV technology. The reason for the city of McAllen adopting the OLEV is because of the support of the Department of Transportation. The Department of Transportation has been supporting Green Energy Research and Future Transportation Technology Development projects since 2009. A total of 266 research proposals were submitted in 2011 and out of that 46 were selected and given a total of 112 million USD. Representative of McAllen city commented “the operation of OLEV buses developed by KAIST will result in decrease in energy consumption and emission of greenhouse gases. The OLEV technology can be applied to existing diesel buses and therefore has high cost efficiency”.
2012.01.31
View 7082
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 8005
KAIST Ocean Technology Center
The KAIST Ocean Technology Center was established and opened in Eureka hall. The founding Center Director was given to Professor Han Soon Heung (department of Marine System and Engineering). The newly found Center will be under the KAIST Mechanical Technology Research Center and will be actively developing ideas like deep sea marine plant, impact resistance to underwater explosion, and etc. and work to commercialize these technologies and contribute to the development of the Shipbuilding industry.
2012.01.31
View 7747
A Step Closer to Ultra Slim Mobile Phone
Professor Baek Kyung Wook (department of Material Science and Engineering) succeeded in developing an ultra-thin conjugation technique that can perfectly replace the modular contact in electronic devices. The research team developed a compound material using ultra-fine solder-adhesive film and developed the vertical ultrasonic conjugation process thereby making a reliable utra-thin conjugation. The developed technique allowed for very thin and reliable conjugation and will be able to replace the socket type connector and is expected to revolutionize the electronic device industry. In mobile electronic devices like the smartphone, the trend is to incorporate various functional modules like camera, display, touchscreens, etc. in addition to striving for miniaturization of the device. Recently the problem was the fact that the number of modules within the device was increasing due to the incorporation of various functions, and consequently the volume that these modules took up increased as well, which made miniaturization almost impossible. Professor Baek‘s team succeeded in improving upon this problem by creating a compound material that has ultra-fine solder particles that can melt to form alloy fusion with the electrode and thermosetting adhesive film that can wrap around the electrode and provide mechanical protection. The use of this material made it possible to reduce the thickness of the connector by hundredth fold which improved electrical, mechanical properties and highly reliable. From a processing standpoint the conventional conjugation process involved heating the mechanical block and was therefore hard to manage its production and also consumed 1000W and took up to 15 seconds. By contrast, Professor Baek’s team’s new process uses only ultrasound to locally heat and melt the conjugation point itself thereby reducing power consumption to 100W and conjugation time to 1~5 seconds. The technique developed by Professor Baek and Lee Ki Won Doctorate student was awarded Excellent Dissertation Award by world famous journals like the Electronic Components and Technology Conference and is being recognized worldwide.
2012.01.31
View 8869
Ten Breakthroughs of the Year 2011 by Science
Porous Zeolite Crytals Science, an internationally renowned scientific journal based in the US, has recently released a special issue of “Breakthrough of the Year, 2011,” dated December 23, 2011. In the issue, the journal introduces ten most important research breakthroughs made this year, and Professor Ryong Ryoo, Department of Chemistry at KAIST, was one of the scientists behind such notable advancements in 2011. Professor Ryoo has been highly regarded internationally for his research on the development of synthetic version of zeolites, a family of porous minerals that is widely used for products such as laundry detergents, cat litters, etc. Below is the article from Science, stating the zeolite research: For Science’s “Breakthrough of the Year, 2011”, please go to: http://www.sciencemag.org/site/special/btoy2011/ [Excerpt from the December 23, 2011 Issue of Science] Industrial Molecules, Tailor-Made If you ever doubt that chemistry is still a creative endeavor, just look at zeolites. This family of porous minerals was first discovered in 1756. They"re formed from different arrangements of aluminum, silicon, and oxygen atoms that crystallize into holey structures pocked with a perfect arrangement of pores. Over the past 250 years, 40 natural zeolites have been discovered, and chemists have chipped in roughly 150 more synthetic versions. View larger version: In this page In a new window Assembly required. Porous zeolite crystals are widely used as filters and catalysts. This year, researchers found new ways to tailor the size of their pores and create thinner, cheaper membranes. CREDIT: K. VAROON ET AL., SCIENCE334, 6052 (7 OCTOBER 2001) This abundance isn"t just for show. Three million tons of zeolites are produced every year for use in laundry detergents, cat litter, and many other products. But zeolites really strut their stuff in two uses: as catalysts and molecular sieves. Oil refineries use zeolite catalysts to break down long hydrocarbon chains in oil into the shorter, volatile hydrocarbons in gasoline. And the minerals" small, regularly arranged pores make them ideal filters for purifying everything from the air on spaceships to the contaminated water around the nuclear reactors destroyed earlier this year in Fukushima, Japan. Zeolites have their limitations, though. Their pores are almost universally tiny, making it tough to use them as catalysts for large molecules. And they"re difficult to form into ultrathin membranes, which researchers would like to do to enable cheaper separations. But progress by numerous teams on zeolite synthesis this year gave this “mature” area of chemistry new life. Researchers in South Korea crafted a family of zeolites in which the usual network of small pores is surrounded by walls holed with larger voids. That combination of large and small pores should lead to catalysts for numerous large organic molecules. Labs in Spain and China produced related large- and small-pore zeolites by using a combination of inorganic and organic materials to guide the structures as they formed. Meanwhile, researchers in France and Germany discovered that, by carefully controlling growth conditions, they could form a large-pore zeolite without the need for the expensive organic compounds typically used to guide their architecture as they grow. The advance opens the way for cheaper catalysts. In yet another lab, researchers in Minnesota came up with a new route for making ultrathin zeolite membranes, which are likely to be useful as a wide variety of chemically selective filters. This surge of molecular wizardry provides a vivid reminder that the creativity of chemists keeps their field ever young. Related References and Web Sites
2011.12.23
View 11401
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 102