본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Communications+technology
by recently order
by view order
Object Identification and Interaction with a Smartphone Knock
(Professor Lee (far right) demonstrate 'Knocker' with his students.) A KAIST team has featured a new technology, “Knocker”, which identifies objects and executes actions just by knocking on it with the smartphone. Software powered by machine learning of sounds, vibrations, and other reactions will perform the users’ directions. What separates Knocker from existing technology is the sensor fusion of sound and motion. Previously, object identification used either computer vision technology with cameras or hardware such as RFID (Radio Frequency Identification) tags. These solutions all have their limitations. For computer vision technology, users need to take pictures of every item. Even worse, the technology will not work well in poor lighting situations. Using hardware leads to additional costs and labor burdens. Knocker, on the other hand, can identify objects even in dark environments only with a smartphone, without requiring any specialized hardware or using a camera. Knocker utilizes the smartphone’s built-in sensors such as a microphone, an accelerometer, and a gyroscope to capture a unique set of responses generated when a smartphone is knocked against an object. Machine learning is used to analyze these responses and classify and identify objects. The research team under Professor Sung-Ju Lee from the School of Computing confirmed the applicability of Knocker technology using 23 everyday objects such as books, laptop computers, water bottles, and bicycles. In noisy environments such as a busy café or on the side of a road, it achieved 83% identification accuracy. In a quiet indoor environment, the accuracy rose to 98%. The team believes Knocker will open a new paradigm of object interaction. For instance, by knocking on an empty water bottle, a smartphone can automatically order new water bottles from a merchant app. When integrated with IoT devices, knocking on a bed’s headboard before going to sleep could turn off the lights and set an alarm. The team suggested and implemented 15 application cases in the paper, presented during the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2019) held in London last month. Professor Sung-Ju Lee said, “This new technology does not require any specialized sensor or hardware. It simply uses the built-in sensors on smartphones and takes advantage of the power of machine learning. It’s a software solution that everyday smartphone users could immediately benefit from.” He continued, “This technology enables users to conveniently interact with their favorite objects.” The research was supported in part by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT and an Institute for Information & Communications Technology Promotion (IITP) grant funded by the Ministry of Science and ICT. Figure: An example knock on a bottle. Knocker identifies the object by analyzing a unique set of responses from the knock, and automatically launches a proper application or service.
2019.10.02
View 25406
GSIS Graduates Its First Doctor
The Graduate School of Information Security at KAIST (GSIS) granted its first doctoral degree to Il-Goo Lee at the university’s 2016 commencement on February 19, 2016. Lee received the degree for his dissertation entitled “Interference-Aware Secure Communications for Wireless LANs.” He explained the background of his research: “As we use wireless technology more and more in areas of the Internet of Things (IoT), unmanned vehicles, and drones, information security will become an issue of major concern. I would like to contribute to the advancement of communications technology to help minimize wireless interference between devices while ensuring their optimal performance.” Based on his research, he developed a communications technique to increase wireless devices’ energy efficiency and the level of their security, and created a prototype to showcase that technique. He plans to continue his research in the development of the next generation WiFi chip sets to protect the information security of IoT and wireless devices. Since its establishment in March 2011, KAIST’s GSIS has conferred 50 master’s and one doctoral degrees.
2016.02.18
View 7728
Kiseok Song, a Ph.D. candidate in the Electrical Engineering Department, receives the 2014 Marconi Society Young Scholar Award
Established in 1974 to commemorate the eminent Italian inventor and electrical engineer, Guglielmo Marconi, the Marconi Society has recognized significant contributions in science and technology by awarding the Marconi Prize, with an annual USD 100,000 grant, to a living scientist who has made great advancements in communications technology. Along with the Marconi Prize, the Society has been presenting the Young Scholars Awards over the past six years to reward young and emerging scientists’ brilliant academic and research achievements as well as their entrepreneurship. For this year’s seventh Young Scholar Awards, a KAIST doctoral student was selected as one of the two recipients. Kiseok Song, a Ph.D. candidate in the Department of Electrical Engineering, KAIST, has been named as a 2014 Marconi Society Paul Baran Young Scholar. The Marconi Society said that Song was being recognized for "his academic achievements and leadership in the field of communications and information science,” according to a press release distributed by the Society on August 28, 2014. Studying under the advice of Professor Hoi-Jun Yoo of the Department of Electrical Engineering at KAIST, Song has developed bio-medical System on a Chip (SoC) such as smart wireless bio-medical systems combined with optimized SoCs, compact bio-medical patch systems connected to smart phones, smart electro-acupuncture and transdermal drug delivery, and multi-modal non-invasive glucose monitors. The press release quoted Professor Yoo’s comment on the meaning of Song’s research: “All of these bio-medical systems open a new healthcare paradigm to improve people’s quality of life in combination with the current mobile smart phones.” In addition to Song, Himanshu Asnani, a Stanford Ph.D. candidate and system engineer at Ericsson Silicon Valley, received the other award. The award ceremony will be held at the Marconi Society’s annual award gala at the National Academies of Science Building in Washington D.C., on October 2, 2014. For details, please read the following press release: The Marconi Society, Press Release, August 28, 2014 “Kiseok Song Receives the 2014 Marconi Society Young Scholar Award” http://www.marconisociety.org/press/2014Song.html
2014.09.08
View 7908
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1