본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Engineering
by recently order
by view order
KAIST Successfully Demonstrates Mobile Harbor in the Open Sea
Busan, South Korea—Large container ships are no longer required to come into ports to transport cargo, as KAIST has developed an innovative technology that will transform the paradigm of today’s cargo handling operations. A Mobile Harbor is a vessel that carries a large stabilized crane with a smart spreader and multistage trolley system, enabling the loading and unloading of ship cargo on the wavy open sea. Following a successful docking of two vessels at sea in April of this year, KAIST conducted a full scope of Mobile Harbor operations in the inner sea of Busan, South Korea, on June 29, 2011. Initiated in 2009, the Mobile Harbor (MH) is one of the university’s flagship research projects, which aims to provide a new growth engine that will lead the Korean economy to the next level of advancement, and to develop green technology through multidisciplinary and convergence research. The idea of MH came to light when thinking outside the box (why can’t a harbor go out to meet a ship on voyage and retrieve goods instead of ships coming into the harbor?) to improve problems relating to the current maritime transport system, such as port congestion, environmental issues caused by heavy sea transport, increased demand for supersized container ships, and the need for port construction and expansion. The essential technology to establish a Mobile Harbor is a docking system and crane system that can overcome the obstacles imposed by the sea, i.e., waves and wind. Connecting two operating vessels of different sizes in the unpredictable and ever-changing environment of the sea was regarded as “impossible” and had never been tried before, but, on April 26, 2011, KAIST successfully demonstrated the technology to moor vessels safely and securely. The Mobile Harbor has a unique way of mooring vessels that are anchored at sea: its flexibly designed robot arms with a square-shape vacuum suction pad at the tip reach out and attach to the hull of a container ship for docking. Each robot arm is connected to a cable and winch that further add stability to the Mobile Harbor. Foam-filled fenders are placed between the Mobile Harbor and the container ship, thereby maintaining a safe distance to prevent collisions. The crane system consists of a multistage trolley, smart spreader, and tension controller, all of which provide the crane with functionality and stability to move around cargo containers in the sea. The crane system also has various sensors like cameras and laser scanners, and therefore, it can gauge the movement of the spreader and ships as well as trace a target container in real time. As a result, the spreader, a container grabbing device, is free from the swing motions when lifting and putting down cargo and grabs a target container safely in the wavy open sea. During today’s at-sea demonstration in Busan, a research team from the KAIST Mobile Harbor Center docked a Mobile Harbor (a barge ship) right next to a container vessel (the other barge ship) and repeated freight transport operations between the two ships, presenting the great potential to commercialize the Mobile Harbor technology. The project has been implemented in collaboration with industries, research institutes, and universities in such fields as mechanical engineering, robotics, automation engineering, and ocean systems engineering. The demonstration proceeded with a wide range of participants including researchers, engineers, government officials, and entrepreneurs from Korea and around the world. Byung-Man Kwak, Director of the KAIST Mobile Harbor Center, explained his feelings on the successful demonstration: “It’s been a remarkable journey to develop a Mobile Harbor from scratch, and I’m genuinely thrilled to showcase what we have accomplished so far. Today’s demonstration of Mobile Harbor’s core technologies will really change the face of our maritime transportation system. We will be able to deliver more goods to global markets and consumers via sea route, not necessarily building more ports or expanding the existing harbors. KAIST’s Mobile Harbor will also significantly cut down the high cost related to overland transportation of cargo and in return, contribute to the reduction of carbon emission.” The Center has received much interest in possible market migration and broader application of the Mobile Harbor from businesses and organizations, e.g., US Office of Naval Research, King Fahd University of Petroleum and Minerals, Saudi Aramco, POSCO, and the Korean Navy.
2011.07.06
View 15560
Using Light to Deliver Drugs to the Brain
The cerebral blood vessels have a unique blood-brain barrier. Using this unique structure, Professor Choi Chul Hee (Department of Bio-Brain Engineering) developed a technique to deliver drugs safely to the brain using lasers to alter the diffusivity of the blood-brain barrier. The blood-brain barrier allows the entry of only those drugs related to metabolic functions which made the entry of other drugs difficult. Due to this property it was difficult to administer the drug to a patient and have it affect the patient. Therefore the question was is it possible to maintain the effectiveness of the drug and allow it to pass through the barrier? The conventional method was to actually alter the structure of the drug or drill of small hole in the head and administering the drug directly, but these methods proved to be high risk and expensive. Professor Choi’s team used an ultra-short frequency laser beam on the barrier for 1/1000th of a second on the barrier to temporarily inhibit its function thereby allowing the drug to enter the brain safely.
2011.06.20
View 8452
Biomimetic Carbon Nanotube Fiber Synthesis Technology Developed
The byssus of the mussel allows it to live in harsh conditions where it is constantly battered by crashing waves by allowing the mussel to latch onto the seaside rocks. This particular characteristic of the mussel is due to the unique structure and high adhesiveness of the mussel’s byssus. KAIST’s Professor Hong Soon Hyung (Department of Material Science and Engineering) and Professor Lee Hae Shin (Department of Chemistry) and the late Professor Park Tae Kwan (Department of Bio Engineering) were able to reproduce the mussel’s byssus using carbon nanotubes. The carbon nanotube, since its discovery in 1991, was regarded as the next generation material due to its electrical, thermal, and mechanical properties. However due to its short length of several nanometers, its industrial use was limited. The KAIST research team referred to the structure of the byssus of the mussel to solve this problem. The byssus is composed of collagen fibers and Mefp-1 protein which are in a cross-linking structure. The Mefp-1 protein has catecholamine that allows it to bind strongly with the collagen fiber. In the artificial structure, the carbon nanotube took on the role of the collagen fibers and the macromolecular adhesive took on the role of the catecholamine. The result was a fiber that was ultra-light and ultra-strong. The results of the experiment were published in the Advanced Materials magazine and is patent registered both domestically and internationally.
2011.06.20
View 11783
New Scientist: Wind power harnesses the energy of galloping, June 2, 2011
Researchers from the Civil and Environmental Engineering Department, KAIST, released their research results in Smart Materials and Structures on ways to “harness strange properties of turbulent airs.” They built a prototype that produces energy using a specific type of unstable airflow called “wake galloping.” New Scientist wrote an article about the paper, which appeared on June 2, 2011. For the article, please follow the link below. http://www.newscientist.com/article/mg21028145.700-wind-power-harnesses-the-energy-of-galloping.html?full=true&print=true
2011.06.04
View 8088
Professor Choi Han Lim receives Automatica Applications Paper Price
Professor Choi Han Lim of the Department of Aerospace received ‘Automatica Applications Paper Prize’ for the first time ever for a Korean. Professor Choi published a paper in the Automatica magazine with the topic of ‘Continuous Trajectory Planning of Mobile Sensors for Informative Forecasting’. Professor Choi dealt with most efficient measuring methods for mobile sensor platforms thereby improving the performance of anticipating environmental changes and proposed key theories for problem solving and also an efficient algorithm. The research was conducted in cooperation with MIT Department of Aerospace Professor Jonathan How with the support of the National Science Foundation. Automatica Journal published by the International Federation of Automatic Control and has been awarding the Automatica Paper Prize every three years.
2011.05.31
View 7806
Displaybank, KAIST Develops Flexible Display Metal Wiring Technology, May 27, 2011
On May 26, Korea Advanced Institute of Science (KAIST) announced that team of Prof. Yang from the Department of Mechanical Engineering developed flexible display metal wiring manufacturing-technology. For the article, please follow the link, http://www.displaybank.com/eng/info/sread.php?id=5877
2011.05.31
View 8292
Professor Hwang Kyu Young Receives Outstanding Contributions Award from DASFAA
Professor Hwang Kyu Young received the 2011 Outstanding Contributions Award from the International Conference on Database Systems for Advanced Applications (DASFAA). Professor Hwang was the Chairman, Vice Chairman, Executive, etc. of the DASFAA Steering Committee for the past 12 years and has been leading the development in the field of database in the Asia/Pacific Region. He was also the editor in chief of The VLDB Journal which is the leading magazine in the field of database and the member of ACM SIGMOD Jim Gray Dissertation Award Committee, VLDB 10-year Best Paper Award Committee, and IEEE ICDE Influential Paper Awards Committee. He receives the Outstanding Contributions Award for ensuring high standards in world database research.
2011.05.31
View 8635
Research Conducted on the Development Policy of Medical Researchers in United States
The topic dealt in the paper was “The Vietnam War and Medical Research: Untold Legacy of the U.S. Doctor Draft and the NIH ‘Yellow Berets’” and basically deals how a Doctor Draft made a positive impact on improving the basic research of clinical medicine. Professor Park received his Doctorate at Johns Hopkins University and came to KAIST in 2007. Summary of Dissertation From the start of the Korean War in 1950 to the end of the Vietnam War in 1973 a large number of medical school graduates were drafted to the army. Of those drafted, 100 personnel were chosen annually to focus on researching in the National Institute of Health who developed into leaders of the field. For example, those who worked as a researcher at the National Institute instead of their armed services were 1.5 times more likely to become a tenured professor, 2 times more likely to be promoted to Dean of the department, and 3 times more likely to be the Dean. In addition, 9 out of 50 Nobel Prize winners in fields of natural sciences between 1985 and 2007 were from the same pool of researchers, and 10 out of 76 recipients of National Medal of Science were also from the same pool of researchers. They were named the ‘Yellow Berets’ like the special forces ‘Green Berets’ and made great contribution to the field in implementing and executing the bench to beside culture that involves development in laboratories to clinical testing. Professor Park maintains that there has to be improvements made in current policies to encourage research work in medical graduate schools.
2011.05.31
View 10406
Artificial Photosynthesis Technology Developed using Solar Cell Material
Humanity is facing global warming and the exhaustion of fossil fuel. In order to remedy these problems, efforts to produce fuel without the production of carbon dioxide using solar energy continues constantly. KAIST’s Professor Park Chan Beom and Professor Ryu Jeong Ki’s research teams of the department of Material Science and Engineering has developed an artificial photosynthesis system that mimics the photosynthesis in nature using solar cell technology. The development of the technology is sure to pave the way to ‘Eco-Friendly Green Biological Process’. Photosynthesis is the process by which a biological entity produces chemical products like carbohydrates using physical and chemical reactions using solar energy as its energy source. Professor Park’s team was able to develop the artificial photosynthesis technology with a biological catalyst as its basis. The result of the experiment was published in ‘Advanced Materials’ magazine on the 26th of April edition and has been patented.
2011.05.11
View 10166
New Diagnosis System for Cardiovascular Disease Developed
Professor Park Hyun Kyu of the department of Biological-Chemical Engineering developed a new diagnosis system for diagnosing cardiovascular diseases using E.coli to test the homocysteine concentration in the blood. The research team used the genetic recombination process to produce two different biologically illuminant nutrition cultures and compared the growth rate of the homocysteine between the two cultures by comparing the degree of luminescence. The technology can allow the simultaneous analysis of blood samples en masse and is also economical and thus is being regarded as a major step forward in the field of homocysteine concentration analysis which is a rapidly growing field. The conventional method used high performance liquid chromatography which took a long time to complete and was costly to run. The advantage of the newly developed system is that it gets rid of costly steps as it only needs to grow E.coli and measure the luminescence of the naturally occurring illuminant. The research was published as the cover paper of the April edition of ‘Analytical Chemistry’.
2011.05.11
View 8152
Dong Ah Newspaper Publish '100 Koreans who will Represent Korea in 10 years'
The 2011 list of ‘100 Koreans who will Represent Korea in 10 years’ published by Dong Ah Newspaper includes people of varying ages, vocation, and gender. In terms of University Professors, five professors from each of KAIST and SNU (Seoul National University) were selected. Especially Professor Charles Ahn received the most votes due to his world class talent, potential, and dedication. Professor Kim Sang Wook of the Department of Materials Science and Engineering is the world leading expert in the field of ‘Atom Construction Nanotechnology’ which deals with using macromolecules, carbon nanotubes, and grapheme to form various structures. His work on ‘low cost, large area nano patterning technology’ is expected to overcome the limits of nano treatment processes and its application in semi-conductors or displays carries great promise. Professor Kim Eun Sung of the Department of Physics discovered a new quantum behavior, supersolidity, in a low temperature, solid Helium for the first time in the world and is the leading scientist that leads the mechanics behind such a phenomenon. Professor Kim is leading the field of supersolidity through his works on hidden phase in a low temperature solid Helium, the understanding the role of crystalline faults in the supersolidity phenomenon, and the destruction of the supersolid’s macromolecular phenomenon through spinning solids. Professor Charles Ahn of the Graduate School of Innovation and Technology Management has been working as the developer of the V3 series (an anti-computer virus Vaccine Program) since 1988. He established the ‘Charles Ahn Research Center’ in 1995 and his solid and practical management style won him rave reviews. Professor Ahn was appointed as the Professor of the Graduate School of Innovation and Technology Management and has been teaching entrepreneurial perspective and Technology Management. Professor Lee Sang Yeop of the Department of Biology and Chemical Engineering developed world’s most efficient production method of succinic acid, developed high efficiency, tailored, culture for the production of key amino acids, Valine and Threonine, developed the production culture off bio-buthanol which is superior to bio-ethanol, and is widely known as one of the leaders in the field of metabolic engineering. Professor Jeong Ha Woong of the Department of Physics is being regarded as world leader in the field of Complex System Network Sciences. He implemented Statistical Physics to Complex Systems and also used the concept of ‘Networks’ and published 80 papers, including 5 which were published in Nature Magazine.
2011.04.30
View 12499
Low Cost and Simple Gene Analysis Technology Developed
Professor Park Hyun Kyu of the Department of Biology and Chemical Engineering has developed a ‘real time CPR’ using Methylene Blue (nucleic acid bonding molecule with Electro-Chemical property). The current gene analysis being used in the field is the real time PCR (Polymerase Chain Reaction) which takes advantage of the luminescent property of the gene and therefore requires expensive machines and chemicals to run. By contrast, the electro-chemical method is easy to use and low cost and, most importantly, it allows the machine to become small and portable. Professor Park’s research team used the decrease in the electro-chemical signal when the Methylene Blue reacts with nucleic acid and applied this to PCR which allowed for the real time analysis of the nucleic acid amplification process. With the result of the experiment as the basis, the team was able to perform a trial with Chlamydia trachomatis, a pathogen that causes sexually transmitted disease. The result showed that the electro-chemical method showed the same performance level as the real time PCR, which proved that the technology can be applied to diagnosing various diseases and gene research.
2011.04.30
View 9076
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 87