본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
CO
by recently order
by view order
A new facility at KAIST opened on July 6, 2010.
Ryu Geun-Chul Sports Complelx will allow students, faculty and staff to pause a moment and exhale in the hustle and bustle of their daily lives. An opening ceremony celebrating the completion of a new facility for the KAIST family was held on July 6, 2010 at the campus. Had it not been for contributions of many people and organizations throughout the nation, among others, Dr. Geun-Chul Ryu, POSCO, Woori Bank, members of KAIST community, parents, and other citizens, it would be impossible to build the facility, said the university. The Complex, a three-story building with a basement, has an indoor court for basketball and volleyball with 3,000 individual seats, 200 meters of running track, indoor golf range, a fitness center, and other convenient facilities. Any members of KAIST community can visit the building and relax their body and mind stressed with work and study. It also provides a large space for ceremonial and cultural gatherings such as 2010 KAIST commencement ceremony. The official name of the building is “Ryu Geun-Chul Sports Complelx,” which was created in appreciation of Dr. Geun-Chul Ryu’s generous act who had donated 57.8 billion won worth of real estate to KAIST in August 2008.
2010.07.07
View 13258
The 8th International Conference on Metabolic Engineering was held on June 13-18, 2010 in Jeju Island, South Korea.
From left to right, top row: Distinguished Professor and the conference chair Sang Yup Lee, Sang-Hyup Kim - Secretary to the President of Korea, Dr. Jay Keasling, Dr. Greg Stephanopoulos. Left to right, bottom row: Dr. William Provine, Dr. Terry Papoutsakis, Dr, Jens Nielsen, Dr. Lars Nielsen. The importance of industrial biotechnology that produces chemicals and materials from renewable biomass is increasing due to climate change and the dearth of natural resources. Industrial biotechnology refers to a technology that allows sustainable bio-based production of chemicals and materials that could enrich human"s lives using microorganisms. This is where metabolic engineering comes into play for successful application of microorganisms, in which they are engineered in our intended way for improved production capability. The 8th International Conference on Metabolic Engineering, the longest running conference of its kind, was held on June 13-18, 2010 at the International Convention Center in Jeju Island, South Korea. Distinguished Professor Sang Yup Lee of KAIST, Dean of College of Life Science and Bioengineering and Co-Director of Institute for the BioCentury, chaired the conference with the main theme of "metabolic engineering for green growth." With 300 delegates selected by the committee, papers on production of biofuels, chemicals, biopolymers, and pharmaceutics and the development of fundamental metabolic engineering techniques were presented at the conference along with examples of successful commercialization of products developed by several global companies. Sang Hyup Kim, Secretary to the President of Korea, gave an opening plenary lecture entitled "Korean green growth initiative," to inform experts from around the globe of the leadership on green growth in Korea. Young Hoon Park, President of Korea Research Institute of Bioscience and Biotechnology (KRIBB, Korea) delivered his congratulatory address. Sang Hyup Kim said, "Hosting an international conference in Korea on metabolic engineering, which forms a core technology necessary for the development of environmentally friendly processes for producing chemicals and biofuels from renewable biomass, is very meaningful as green growth is a big issue around the globe. This is a great chance to show the excellence of Korea"s green growth associated technology to experts in metabolic engineering and industrial biotechnology." A total of 47 invited lectures in this conference included recent and important topics, for instance, "Synthetic biology for synthetic fuels" by Dr. Jay Keasling from the Joint BioEnergy Institute (USA), "Microbial oil production from renewable feedstocks" by Dr. Greg Stephanopoulos from MIT (USA), "Yeast as a platform cell factory for production of fuels and chemicals" by Dr. Jens Nielsen from Chalmers University (Sweden), "Mammalian synthetic biology - from tools to therapies" by Dr. Martin Fussengger from ETH (Switzerland), "Building, modeling, and applications of metabolic and transcriptional regulatory networks at a genome-scale" by Dr. Bernhard Palsson from the University of California - San Diego (USA), "Genome analysis and engineering Eschericha coli for sucrose utilization" by Dr. Lars Nielsen from the University of Queensland (Australia), "Artificial microorganisms by synthetic biology" by Dr. Daniel Gibson from JCVI (USA), and "Metabolomics and its applications" by Dr. Masaru Tomita from Keio University (Japan). From Korea, Dr. Jin Hwan Park from the research group of Dr. Sang Yup Lee at KAIST presented "Systems metabolic engineering of Escherichia coli for amino acid production," and Dr. Ji Hyun Kim from KRIBB presented "Genome sequencing and omics systems analysis of the protein cell factory of Escherichia coli". Global companies involved in biorefinery presented their recent research outcomes with emphasis on commercialized technologies. They included "Metabolic and process engineering for commercial outcomes" by Dr. William Provine from DuPont (USA), "Direct production of 1,4-butanediol from renewable feedstocks" by Dr. Mark Burk from Genomatica (USA), "Development of an economically sustainable bioprocess for the production of bio 1,2-propanediol" by Dr. Francis Voelker from Metabolic Explorer (France), "Biotechnology to the bottom-line: low pH lactic acid production at industrial scale" by Dr. Pirkko Suominen from Cargill (USA), "Bioisoprene™: traditional monomer, traditional chemistry, sustainable source" by Dr. Gregg Whited from Danisco (USA) and "Efficient production of pharmaceuticals by engineered fungi" by Dr. Roel Bovenberg from DSM (Netherlands). This biennial conference also presented the International Metabolic Engineering Award (expanded version of the previous Merck Metabolic Engineering Award) to the best metabolic engineer in the world. The 2010 International Metabolic Engineering Award went to Dr. E. Terry Papoutsakis from the University of Delaware (USA) who has contributed to the production of biobutanol through the metabolic engineering of Clostridia in the last three decades, and he gave an award lecture. Dr. Sang Yup Lee, the current chair of the upcoming conference, was the previous recipient of this award at the last metabolic engineering conference in 2008. In addition to the invited lectures, a total of 156 carefully selected poster papers were chosen for presentation, and awards were presented to the best posters after rigorous review by the committee members. Such awards included "The 2010 Metabolic Engineering Best Poster Award" and the "2010 Young Metabolic Engineer Award" from the Metabolic Engineering conference, and prestigious international journal awards, including "Wiley Biotechnology Journal Best Poster Award", "Wiley Biotechnology and Bioengineering Best Poster Award" and "Elsevier Metabolic Engineering Best Paper Award." Dr. Catherine Goodman, a senior editor of Nature Chemical Biology, also presented the "Nature Chemical Biology Best Poster Award on Metabolic Engineering." Regarding this conference, Dr. Sang Yup Lee, the conference chair, said, "This conference is the best international conference in the field of metabolic engineering, which is held every two years, and Korea is the first Asian country to host it. All the experts and students spend time together from early breakfast to late poster sessions, which is a distinct feature of this conference. Although the number of delegates had typically been limited to 200, around 300 delegates were selected this year to accept more attendees from many people who have been interested in metabolic engineering. Also, it is very fitting that "green growth" is the main topic of this conference because Korea is playing a key role in this field. I"m grateful to the Lotte Scholarship Foundation, COFCO, GS Caltex, Bioneer, US DOE, US NSF, Daesang, CJ Cheiljedang, Genomatica and DuPont who provided us with generous financial support that allowed the successful organization of this conference." The conference was organized by the Systems Biology Research Project Team supported by the Ministry of Eduction, Science and Technology (MEST), Microbial Frontier Research Project Group, World Class University Project Group at KAIST, Institute for the BioCentury at KAIST, Korean Society for Biotechnology and Bioengineering, and the Engineering Conference International (ECI) of the United States. Inquiries: Professor Sang Yup Lee (+82-42-350-3930), industrialbio@gmail.com
2010.06.25
View 19820
President of Israel visited KAIST on June 9, 2010.
President of Israel, Shimon Peres, visited KAIST today on June 9, 2010 to witness the development of science and technology in Korea and explore ways of establishing collaboration and cooperation with industries and universities between Korea and Israel. President Peres led a delegation consisted of the Israeli Mister of Industry, Trade, and Labor, the Minister of Communication, and 60 business leaders from the top companies in the security, infrastructure, communication, high-tech, and water industries. Upon their arrival to the campus, the Israeli delegation was greeted by KAIST’s humanoid robot, “HUBO,” and then moved to its branch campus, IT Convergence Campus, for a ride of Online Electric Vehicle (OLEV) that has been developed by KAIST. The OLEV receives the necessary power through the cable lines buried underground, so it can be provided with a constant and continuous supply of electricity while running or stopping. Between roads and OLEVs is nothing but space. There is no electrical wires intricately crossed underbody of the electric car or above the road. The pick-up equipment installed beneath the body of the electric car collects magnetic fields created around the underground cables, which then converts the filed into electricity. The OLEV’s wireless, non-contact charging system made it possible for a battery currently used for hybrid or pure electric cars on the market to be smaller and cheaper. President Peres expressed a great interest in the technology applied to the OLVE, quoting, “the OLEV system is indeed very impressive.” He talked about efforts being made in Israel with respect to the development of electric cars. The country plans to replace the conventional transportation system with electric cars by constructing a network of battery exchange stations and roadside charge points which allow the cars to be charged whenever they are parked. “Despite the different approach taken by the two nations for the development of electric cars, I believe that transforming the automobile industry from combustion engine to electric system is the right direction we should all follow. Without addressing the current transportation system that heavily dependent on natural resources, we will not be able to promote “green growth on a global scale,” added President Peres. In addition to electric cars, President Peres took up a considerable portion of his time to exchange ideas on how to expand cooperative relations between universities in Korea and Israel, specifically in the area of space, biotechnology, nanotechnology, high-tech, renewable and alternative energy, and the EEWS initiatives that have been implemented by KAIST to find answers to global issues such as climate change and depletion of natural resources. The EEWS stands for energy, environment, water, and sustainability. In response, the president of KAIST pledged to set up a stronger and greater tie with research universities in Israel, particularly called for more collaboration between KAIST and Technion-Israel Institute of Technology. Also, the Israeli delegation had a tour for several Korean research and development centers in Daedeok Innopolis, located in the City of Daejeon, which is the 2nd largest science and research complex in Korea. Shimon Peres, the 9th president of Israel, held many of important government positions in Israel, among other things, Prime Minster and Minister of Defense. He won Nobel Peace Prize in 1994, together with Yitzhak Rabin and Yasser Arafat for the conclusion of a peace agreement, Oslo Accords, between Israel and Palestine Liberation Organization.
2010.06.09
View 17127
KAIST held an opening ceremony for the completion of KAIST Institute Building.
A Korean American businessman and his wife, Byiung Jun Park and Chunghi Hong, donated 10 million USD for the construction of the building. KAIST hosted an opening ceremony on May 11, 2010 for the new addition to its campus, called the Chunghi & Byiung Jun (BJ) Park KAIST Institute Building. The KI Building will serve as a hub for creative multidisciplinary researches. A Korean American businessman and his wife made a considerable contribution for the construction of the building, worth 10 million USD. KAIST called the building Byiung Jun (BJ) Park and Chunghi Hong in recognition of their contribution. Chairman Park was the founder of the Merchandise Testing Laboratory, a leading textile quality control multinational. It took 19 months to finish the construction of the KI Building with a total cost of 36 billion Korean won. The building consists of one basement and five ground floors. At the basement, there are clean room and equipment storage room; on the 2nd and 3rd floors, conference and exhibition halls; and on the rest of the floors, research labs and administration offices are to be located. KAIST’s eight integral research institutes will be placed inside the building: the BioCentury; Information Technology Convergence; Design of Complex Systems; Entertainment Engineering; the NanoCentury; Eco-Energy; Urban Space and Systems; and Optical Science and Technology. Approximately 230 professors from 25 departments of various academic fields will make the KI Building home for study and research. The KI Building will play a great role in producing world-class convergence research works by KAIST researchers and professors, thereby making a contribution to the improvement of national competitiveness. Vice President of KI Building, Sang-Soo Kim, said, “There has been no such place for us to concentrate research manpower and equipment scattered around the campus. By having all the necessary resources at one place will allow us to conduct convergence researches more efficiently and effectively. I’d like to express my appreciation for the Ministry of Education and Science and Technology as well as Chairman Byiung Jun (BJ) Park, who gave us tremendous supports in the process of constructing the KI Building.” “The building’s inside has a unique office structure, getting rid of walls or partitions between institutes or departments, to stimulate an environment conducive to convergence researches. We hope to present a new model for creative multidisciplinary researches through a selective and focused approach to be facilitated by institutes at the KI Building,” added by the vice president.
2010.05.20
View 12843
A donation to KAIST by a gambler
The Korea Herald ran an editorial on the news that a man who won the biggest-ever jackpot in Korean casino history on Saturday, May 15, 2010, decided to donate the entire prize money to the Korea Advanced Institute of Science and Technology (KAIST). Below is the full text of the editorial published on May 18, 2010. http://www.koreaherald.com/opinion/Detail.jsp?newsMLId=20100518000648 The Korea Herald: [Editorial] Gambler’s donation 2010-05-18 18:09 KAIST, Korea’s leading research university, often makes news with donations from a variety of benefactors who wish to help develop science and technology in Korea with money they earned through their careers. The list of donors, which includes farmers, securities dealers, medical doctors, foreign businesspeople and popular entertainers, now has one unusual entry, a gambler. Ahn Seung-pil, 60, may not be exactly a “gambler” – at least not a professional one. He has visited Kangwon Land, a casino located in the mountain region of Jeongseon, Gangwon Province, only a few times since it opened in 2000 as the only place Korean nationals could gamble. Ahn, who runs a small textile business in Seoul, hit the jackpot of 766 million won (about $665,000), the largest amount ever at Kangwon Land or from any slot machine at a Korean casino. He said he was motivated to donate the money to KAIST in Daejeon City when he watched a television program after returning home, in which a professor emphasized the importance of advancing science and technology in the country. He had incurred heavy debts during the 1997 economic crisis and has yet to clear them all, but he thought of using the prize money for a good cause. The TV program guided him to KAIST, said Ahn, who has “not had a high level of education.” Korea is known worldwide for its people’s strong zeal for university education. Parents do whatever they can to send their children to good universities but are so exhausted before the entrance that they barely pay the tuition once they get there. Universities have to rely mainly on tuition and meager subsidies from foundations or the state treasury. Private donations are rare, compared to European or American universities. Major universities complain that members of the alumni societies are rather indifferent to calls for donation. The majority of donors who give significant amounts are people who weren’t lucky enough to go to university, such as Ahn Seung-pil.
2010.05.19
View 12345
A KAIST graduate to become a professor at a prestigious university in UAE
A KAIST graduate to become a professor at a prestigious university in UAE Dr. Jerald Yoo, a KAIST graduate, has been appointed as an assistant professor at the Masdar Institute of Science and Technology (MIST) in Abu Dhabi, United Arab Emirates (UAE), by the recommendation of the Massachusetts Institute of Technology (MIT) since April 1, 2010. The MIST is a private, not-for-profit, independent, research-driven institute developed with the support and cooperation of MIT and the Abu Dhabi government, which was opened in September 2009. Currently, at the school, there are 25 professors and 100 students from 22 countries around the world. The institute has a campus in Masdar City where the Abu Dhabi government plans to nurture it as a “place for zero carbon emissions.” According to an agreement between the MIST and MIT, Professor Yoo will teach and work on co-research projects at MIT for one year beginning in May 2010 and then working at the MIST thereafter. Professor Yoo received all of his degrees (BS, MS, and Ph.D.) from KAIST majoring in electrical engineering and earned his doctoral degree in January 2010. His research works included developing a wearable patch to monitor bio signals with an application of wearable sensor networks and low energy electronic circuit technologies. During his doctoral study, Professor Yoo published papers at the IEEE International Solid-State Circuits Conference (ISSCC) and in journals of IEEE Solid-State Circuits Society (SSCS). Professor Yoo said, "The wearable health care system is certainly necessary to improve the quality of our lives, and the field should receive a sustaining support for further research. I will do my best to continuously produce valuable research results and hope that my research works will be helpful for an academic exchange between South Korea and Abu Dhabi.” About the Masdar Institute of Science and Technology (MIST) in Abu Dhabi: http://www.masdar.ac.ae/ The Masdar Institute is the centerpiece of the Masdar Initiative, a landmark program announced in April 2006 by the government of Abu Dhabi to establish an entirely new economic sector dedicated to alternative and sustainable energy. Masdar is a highly-strategic initiative with primary objectives of: helping drive the economic diversification of Abu Dhabi; maintaining and expanding Abu Dhabi"s position in evolving global energy markets; positioning Abu Dhabi as a developer of technology; and making a meaningful contribution towards sustainable human development. The Masdar Institute is a private, not-for-profit, independent, research-driven institute developed with the support and cooperation of the Massachusetts Institute of Technology (MIT). The Institute offers Masters and (eventually) PhD programs in science and engineering disciplines, with a focus on advanced energy and sustainable technologies. It welcomes and encourages applications from qualified local and international students and provides fellowships to talented students who meet its high admission standards. Its faculty is of the highest quality and the intent is to have the structure of its top administration similar to MIT"s.
2010.04.13
View 13384
News Article: Naro space rocket getting ready for second launch, April 12, 2010
News Article on KIAST published on April 12, 2010 The Korea Herald, 2010-04-12 17:07 Naro space rocket getting ready for second launch By Bae Hyun-jung (tellme@heraldm.com) The Ministry of Education, Science and Technology is checking on the second launch of Naro, Korea’s first space rocket, as all the necessary parts were transferred to the launch center last week. The Science Technology Satellite No. 2 was transferred last Thursday from the KAIST Satellite Technology Research Center in Daejeon to the Naro Space Center in South Jeolla Province, said ministry officials. The solid-fuel second-stage rocket reached the center last Monday and the liquid-fuel first-stage rocket did so on March 23. The latter was manufactured in Russia’s Khrunichev State Space Science and Production Center. The satellite, a small one weighing 100 kilograms, was co-developed by the Korea Aerospace Research Institute, KAIST SaTReC and the Gwangju Institute of Science and Technology. It is to revolve around the Earth for two years collecting data on climate change by gauging the hydrogen content in the atmosphere, said officials. “With all the crucial parts ready here in the center, we have officially kicked off our final investigation before setting the details of the second Naro launch,” said a ministry official. Second Vice Minister Kim Joong-hyun last week visited the Naro center to attend the overall inspection on all facilities related to the rocket launch. The date has not yet been set for the second launch but will be fixed within this month, said officials. With the general inspection completed on the facilities, the first-stage rocket and the satellite will be assembled and the combination will be joined by the second-stage rocket in May. The first launching attempt ended in failure in August due to faulty electrical wiring or a mechanical problem in the fairing separation mechanism, according to panels. The two fairings -- used to cover and protect the satellite placed on top of the Naro -- failed to separate timely and thus stopped the satellite from gaining sufficient velocity to reach its planned orbit. Korea has so far spent 502.4 billion won ($428.1 million) on the Naro project since it began in August 2002.
2010.04.13
View 14392
"The 2010 Artificial Intelligence Robot War Competition" begins to receive applications
[Event Notice] “The 2010 Artificial Intelligence Robot War Competition” begins to receive applications A good opportunity to gauge the intelligence of your robots “The 2010 Artificial Intelligence (AI) Robot War Competition” will be held in October 2010, and the Competition has been receiving applications from contestants since April 1st. The deadline for the application will be May 31st, 2010. Qualified contestants must be a minimum of two, but less than six, team members, and they will compete in one of the two fields: System on Chip (SoC) Taekwon Robot and Humanoid Robot (HURO). Winners will be decided based on the intelligence capabilities presented by a robot’s platform that mimics key functions of the human brain. SoC Taekwon Robot will compete against one another by using a camera installed on its head to recognize visual images, locations, distances, and gestures of the other competing robot. HURO competition is a new entry begun this year, and winners will be determined in accordance with the robot’s ability to perform given missions and fights. Missions are to go through a track installed with obstacles, recognize colors and shapes of barriers, and knock down barriers to earn scores. Fighting will be performed in the form of a Korean martial art, Tae-kwon-do. The Korean government has nominated Robotics as one of the key growth engines to develop IT industry and Korean economy. Robotics converge many of different engineering fields, such as machinery, materials, components, and embedded software. In particular, the SoC is an essential technology for Korea to continuously take lead in the semi-conductor industry in the world, which is an important element for robotics. SoC stands for System on Chip, an integrated chip that assembles various chips and components to be fabricated together on a single chip, instead of building them on a circuit board. The SoC technology has advantages of higher performance, smaller space requirements, lower memory requirements, higher system reliability, and lower consumer costs. An artificial intelligence SoC robot is autonomous because it can adapt itself to changes in various environments and reach a given goal without constantly receiving external orders. For details of the event, please refer to the website of www.socrobotwar.org.
2010.04.06
View 13437
Interesting research results were published on the use of Twitter.
The number of “followers” on your Twitter account does not necessarily mean that “Your opinions matter much” to other people. A KAIST graduate researcher, Mi-Young Cha, joined an interesting project that studies the influence of a popular social media, Twitter. Most of Twitter users today consider the number of followers as a measurement of their influence on the social sphere. According to the research paper, however, this connection does not seem to standing together. For details, please click the link below for an article published by the New York Times. Dr. Cha received all of her post secondary education degrees in Computer Science, including her Ph.D. in 2008, from KAIST. Since 2008 till now, she has been a post doctoral researcher at Max Planck Institute for Software Systems (MPI-SWS) based in Germany. [New York Times Article, March 19, 2010] http://www.nytimes.com/external/readwriteweb/2010/03/19/19readwriteweb-the-million-follower-fallacy-audience-size-d-3203.html
2010.04.05
View 13951
New drug targeting method for microbial pathogens developed using in silico cell
A ripple effect is expected on the new antibacterial discovery using “in silico” cells Featured as a journal cover paper of Molecular BioSystems A research team of Distinguished Professor Sang Yup Lee at KAIST recently constructed an in silico cell of a microbial pathogen that is resistant to antibiotics and developed a new drug targeting method that could effectively disrupt the pathogen"s growth using the in silico cell. Hyun Uk Kim, a graduate research assistant at the Department of Chemical and Biomolecular Engineering, KAIST, conducted this study as a part of his thesis research, and the study was featured as a journal cover paper in the February issue of Molecular BioSystems this year, published by The Royal Society of Chemistry based in Europe. It was relatively easy to treat infectious microbes using antibiotics in the past. However, the overdose of antibiotics has caused pathogens to increase their resistance to various antibiotics, and it has become more difficult to cure infectious diseases these days. A representative microbial pathogen is Acinetobacter baumannaii. Originally isolated from soils and water, this microorganism did not have resistance to antibiotics, and hence it was easy to eradicate them if infected. However, within a decade, this miroorganism has transformed into a dreadful super-bacterium resistant to antibiotics and caused many casualties among the U.S. and French soldiers who were injured from the recent Iraqi war and infected with Acinetobacter baumannaii. Professor Lee’s group constructed an in silico cell of this A. baumannii by computationally collecting, integrating, and analyzing the biological information of the bacterium, scattered over various databases and literatures, in order to study this organism"s genomic features and system-wide metabolic characteristics. Furthermore, they employed this in silico cell for integrative approaches, including several network analysis and analysis of essential reactions and metabolites, to predict drug targets that effectively disrupt the pathogen"s growth. Final drug targets are the ones that selectively kill pathogens without harming human body. Here, essential reactions refer to enzymatic reactions required for normal metabolic functioning in organisms, while essential metabolites indicate chemical compounds required in the metabolism for proper functioning, and their removal brings about the effect of simultaneously disrupting their associated enzymes that interact with them. This study attempted to predict highly reliable drug targets by systematically scanning biological components, including metabolic genes, enzymatic reactions, that constitute an in silico cell in a short period of time. This research achievement is highly regarded as it, for the first time, systematically scanned essential metabolites for the effective drug targets using the concept of systems biology, and paved the way for a new antibacterial discovery. This study is also expected to contribute to elucidating the infectious mechanism caused by pathogens. "Although tons of genomic information is poured in at this moment, application research that efficiently converts this preliminary information into actually useful information is still lagged behind. In this regard, this study is meaningful in that medically useful information is generated from the genomic information of Acinetobacter baumannii," says Professor Lee. "In particular, development of this organism"s in silico cell allows generation of new knowledge regarding essential genes and enzymatic reactions under specific conditions," he added. This study was supported by the Korean Systems Biology Project of the Ministry of Education, Science and Technology, and the patent for the development of in silico cells of microbial pathogens and drug targeting methods has been filed. [Picture 1 Cells in silico] [Picture 2 A process of generating drug targets without harming human body while effectively disrupting the growth of a pathogen, after predicting metabolites from in silico cells]
2010.04.05
View 16951
New Text Book on Chemistry Published by KAIST Professor and Student
A chemistry textbook written in English and Korean will aid Korean students to learn General Chemistry in a global academic setting. Korean students majoring in chemistry and looking for an opportunity to study abroad will have a new, handy textbook that presents them with a practical introduction to an English speaking lecture on general chemistry. Aiming for advanced Korean high school and college/university students, the inter-language textbook is written by two incumbent professors teaching chemistry at a university in Korea and the US. The book will help Korean students prepare for a classroom where various topics of general chemistry are presented and discussed in English. Clear, collated sections of English and Korean text provide the student with sufficient explanation of the rudimentary topics and concepts. Composed of 15 chapters on the core subjects of General Chemistry, i.e., Stoichiometry and Chemical Reactions, Thermochemistry, Atomic Structure, and Bonding, the textbook includes essential English vocabulary and usage sections for each chapter; it also contains a pre-reading study guide on the subject that prepares the student for listening to a lecture. This section includes view-graph type slides, audio files, and follow-up questions the student can use to prepare for an English-speaking course. The various accompanying audio files are prepared to expose the student to English scientific dialogue and serve as examples for instruction at Korean secondary and tertiary schools. The book was coauthored by Korean and American scientists: A father and son, who have taught chemistry at an American and Korean university, wrote the book. Professor Melvyn R. Churchill at the State University of New York at Buffalo and Professor David G. Churchill at KAIST prepared all of the technical English text which was adapted from General Chemistry course lecture notes; the text was further shaped by original perspectives arising from many student interactions and questions. This English text was translated into Korean by Professor Kwanhee Lee from the Department of Life and Food Science at Handong Global University, who coauthored a previous preparatory book for Korean students in a different subject. He also supplied an important introductory section which serves as a general guide to the classroom student. Kibong Kim, a doctoral student in the Department of Chemistry at KAIST, helped in preparing the book as well. “This has been definitely a collaborative undertaking with an international academic crew and it underscores that the Korean internationalization in science is mainstream. Professors and a Korean student created a new book for Korean consumption and benefit,” Professor David G. Churchill says. ---------------------------------------------------------------------------------------- Bibliography: “How to Prepare for General Chemistry Taught in English” by David George Churchill, Melvyn Rowen Churchill, Kwanhee Lee & Kibong Kim, Darakwon Publishing, Paju, Republic of Korea, 2010, 400 pp, ISBN 978-89-5995-730-9 (1 Audio CD included)
2010.04.02
View 15170
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010.
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010. HUBO, a humanoid robotdeveloped by KAIST, gave a warm welcome to the prime minister and his delegation. Prime Minister Lars Løkke Rasmussen of Denmark visited Moon-Ji Campus of KAIST on March 11, 2010 and had a chance to meet a humanoid robot, HUBO. Since the first appearance in 2005, HUBO has been continuously developed by KAIST for further refinements. HUBO welcomed the prime minister and offered him a flower bouquet. They also shook hands and exchanged small talks in Danish, which made the delegation pleasantly surprised. The Danish delegation had a ride on Online Electric Vehicle (OLEV) and showed a great interest in the technology applied therein. The prime minister said, “Denmark has a keen interest in green technology, and I was very impressed by OLEV. It is just amazing to see how fast KAIST has developed as an outstanding research university in the world during a short period of time.” President Lee Myung-bak invited the Danish prime minister to discuss current international developments, including issues involving the Korean Peninsula, and ways to enhance bilateral cooperation in such areas as trade, investment, renewable energy and green growth.
2010.03.17
View 13386
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 79