본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ES
by recently order
by view order
Professor Lee Jeong Yong Receives 2012 'KAISTian of the Year' Award
Professor Lee Jeong Yong (Department of Material Science and Engineering) received the 2012 ‘KAISTian of the Year’ Award. Professor Lee had successfully developed a technique that allowed the observation and analysis of liquid in atomic scale. The technique is expected to have great impact on nano-material synthesis in solution, explaining electrode and electrolyte reaction, liquid and catalysis reaction research, and etc. and was therefore named as the best experimental accomplishment in KAIST in 2012. Professor Lee and his team’s finding has been published in the April edition of Science magazine and has had attracted the attention of the world. In addition, BBC News, and Science & Environment reported on the findings as their respective top articles. The optical microscope is incapable of atomic scale observation and the electron microscopes are capable but because of the vacuum state all liquids undergo evaporation making it impossible to observe liquids in an atomic scale. Professor Lee’s team wrapped the liquid with a layer of grapheme to prevent evaporation and successfully observed real time the platinum growth process in solution. Professor Lee’s findings were introduced as an example of exemplar research case in the Presidential address for ‘Science Day’ in April.
2013.01.22
View 8476
KAIST Alumni Association Selects 'Proud Alums'
KAIST Alumni Association selected ‘Proud Alums’ who have contributed to the development of Korea and society and brought honor to KAIST. The Alums selected were: CEO of Hyundai Heavy Industry Lee Jae Seong, Vice President of SK Hynix Park Sang Hoon, President of Samsung Display Kim Ki Nam, Director of Korea Research Institute of Standards and Science Kang Dae Lim, and President of Dawonsys Park Sun Soon. Lee Jae Song (Department of Industrial and Systems Engineering, M.S. 3rd) has led Hyundai Heavy Industries through innovation and had contributed in the development of Korea and oversaw the growth of Hyundai Heavy Industries to number 1 in Shipbuilding. Park Sang Hoon (Biological and Chemical Engineering, M.S. 5th) has led SK Hynix in the fields of energy, chemical and biological medicine and oversaw the development of world class R&D and production technologies to aid the development of Korea. Kim Ki Nam (Electrical and Electronic Engineering, M.S. 9th) has led the development of innovative semiconductor technologies thereby helping strengthening the competitiveness of Korean semiconductor industry. Kang Dae Lim (Mechanical Engineering, Ph.D. 1994 graduate) has helped in the development of Korean science and technology by leading the field of measurement standardization as Chairman of International Measurement Confederation and Chairman of Korea Association of Standards & Testing Organizations. Park Sun Soon (Electrical and Electronic Engineering, M.S. 12th) has succeeded in advancing the field of electronics by pioneering the field of creative technology.
2013.01.22
View 8848
KAIST Professors win 2012 Korea Engineering Award
Distinguished Professor Hwang Gyu Young (Department of Computer Science) and Professor Yang Dong Yol (Department of Mechanical Engineering) from KAIST received the 2012 ‘Korea Engineering Award’ hosted by the Ministry of Education, Science and Technology and the Korea Research Foundation. The ‘Korea Engineering Award’ is given biennially to researchers who have accomplished world class research and have contributed greatly to Korea’s development in the field of Science and Technology. The award started in 1994 and a total of 24 recipients were recognized in various fields such as electronics, mechanics, chemistry, construction, etc. The recipients of the award areawarded the Presidential award as well as 50million won as prize money. Professor Hwang was recognized for his research on DBMS close-coupling architecture as well as other new data base system theories, contributing to the development of the IT software industry in Korea. Professor Yang was praised for his work in precision shape creation and manufacturing, especially for his work in the nano-stereolithography process. In addition, Professor Oum Sang-il from the Deparment of Mathematical Science received the 2012 ‘Young Scientist Award’ hosted by the Ministry of Education, Science and Technology and the Korean Academy of Science and Technology. The ceremony for ‘Korea Engineering Award’ and the ‘Young Scientist Award’ was held in Seoul Press Center Press Club on the 21st of December.
2012.12.26
View 11748
Professor Cho Young-ho wins 'E2 Star' award
Professor Cho Young-ho from the Department of Bio and Brain Engineering at KAIST was chosen as the ‘E2 Star’ at the ‘2012 Engineering Education Festa’ in academics. The ‘2012 Engineering Education Festa’ hosted by the Ministry of Education, Science and Technology was held to display outstanding research results and to conceptualize the future of science education. The ‘E2 star’ award is given to renowned figures in industry, academia and society. A total of 35 candidates were recommended for the 3 fields and Professor Cho received the first place in the online voting. Professor Cho received high marks for his work in engineering education, research development and increasing the communication between academia and industry, as well as the commercialization of science and technology. Professor Cho was especially praised for the specialization of engineering education in integrated fields and the joint research with US and Swiss universities. Professor Cho Young-ho(Department of Bio and Brain Engineering, KAIST)
2012.12.26
View 9583
Prof. Jang-Uk Choi develops Strong, Long-lasting Lithium-ion Battery
Lithium-ion secondary battery with high power, as well asmuch longer life span, has been developed using nanotechnology. Professor Jang-Uk Choi and his colleagues at KAIST University EEWS graduate school has succeeded in developing a new lithium-ion secondary battery that has more than five times the output and three times the life span of the conventional batteries. The industry expects the new battery to significantly improve the acceleration performance and solve the drawbacks of slow electric cars, which occurred due to failure of battery performance to keep up with the output of the motors during acceleration. It is also expected that the new battery could be utilized in various fields that require high power batteries such as Smart Grid, which is the next generation intelligent electrical grid, as well as electric tools and many others. Currently, the most widely used commercial lithium ion batteries’ lithium-cobalt-based cathode material has the disadvantage of expensive cost, high toxicity, short life expectancy and long-charge/discharge time. Also, it has been difficult to apply in electric cars that require a large current density and are vulnerable to heat generated during charging/discharging. On the other hand, Professor Choi and his colleagues’ lithium-manganese based cathode material is gaining popularity for having the advantages such as abundant raw materials, cheap prices, eco-friendliness and especially excellent high-temperature stability and high output, which are suitable for use as electrode material in electric cars. The pure lithium manganese based cathode material has a critical drawback of a very short life expectancy, only lasting about average of 1-2 years, which is due to the elution when the melted manganese flows out into the electrolyte. There have been various studies to solve this problem; however, the unique crystal structure of the material remained as a challenge for many scientists. Professor Choi’s team analyzed the structure of the crystal at the time shortly before manganese oxides were formed, while controlling the reaction temperature at the step of synthesizing nanomaterial. It has been found that, at 220℃, there are simultaneously existing two crystal faces, one that inhibits the dissolution of manganese ions and the other that enables lithium ions to move smoothly. Each of these crystal faces improves both the life span and output, increasing the output more than five times and life expectancy over three times. In addition, the existing high temperature life span, that was known to be especially vulnerable, has improved ten-fold. “By controlling the crystal face of lithium manganese anode material, which has previously existed in the battery as chunks of about 10 micro-meter particles, both output and life span has significantly improved,” said Professor Choi, “Domestic and international patent application for the regarding technology has been finished and we have plans to work with companies in the future for commercialization within 2-3 years.” Professor Yi Cui of Stanford University, the world’s leading scholar on the secondary battery, has evaluated that “This research exemplifies how nanotechnology can innovatively develop the field of secondary battery.” Meanwhile, the research led by Professor Jang-Uk Choi and participated by researcher Ju-Seong Kim has been published on the online edition (dated Nov 27th) of Nanoletters, the world’s leading authority on Nanoscience.
2012.12.21
View 8769
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situ
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situation or aid in the finding of a lost smartphone. Professor Han Dong Soo (Department of Computer Sciences) and his research team has developed the technology that enables tracking a smartphone’s location indoors using wireless LAN signals accurate to 10 meters. Because the technology utilizes wireless LAN signals and the address of smartphone users, the technology can be implemented for a low cost all over the world. Conventionally the location of a lost smartphone can be found through a telecommunications company. However the location found using the base station is only accurate to 500m~700m and therefore reclaiming lost smartphones is nearly impossible. In addition, there have been unfortunate events where the kidnapped victim called the police but was murdered due to the inaccuracy of smartphone location tracking. The newly developed technology by Professor Han’s team remedies the inaccuracy of smartphone location tracking. Professor Han’s team collected wireless LAN data recorded in the smartphones for a week to analyze the patterns to distinguish patterns between signals recorded in the workplace and in the household. The stability and accuracy of the technology was verified over a period of five months in various locations across Korea with varying population densities. The result was when the total amount of data collected passes 50% of the number of households, the technology show accuracy to 10 meters. The result showed that the new technology can track the location of the smartphone to 10 meters on a household scale. In addition it was possible to distinguish which floor the smartphone was located. The technology is anticipated to improve smartphone positioning. However caution needs to be practiced as the technology requires the address of the user’s workplace and home.
2012.12.21
View 8451
Household Scale Indoor Position Tracking Technology Developed
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situation or aid in the finding of a lost smartphone. Professor Han Dong Soo (Department of Computer Sciences) and his research team has developed the technology that enables tracking a smartphone’s location indoors using wireless LAN signals accurate to 10 meters. Because the technology utilizes wireless LAN signals and the address of smartphone users, the technology can be implemented for a low cost all over the world. Conventionally the location of a lost smartphone can be found through a telecommunications company. However the location found using the base station is only accurate to 500m~700m and therefore reclaiming lost smartphones is nearly impossible. In addition, there have been unfortunate events where the kidnapped victim called the police but was murdered due to the inaccuracy of smartphone location tracking. The newly developed technology by Professor Han’s team remedies the inaccuracy of smartphone location tracking. Professor Han’s team collected wireless LAN data recorded in the smartphones for a week to analyze the patterns to distinguish patterns between signals recorded in the workplace and in the household. The stability and accuracy of the technology was verified over a period of five months in various locations across Korea with varying population densities. The result was when the total amount of data collected passes 50% of the number of households, the technology show accuracy to 10 meters. The result showed that the new technology can track the location of the smartphone to 10 meters on a household scale. In addition it was possible to distinguish which floor the smartphone was located. The technology is anticipated to improve smartphone positioning. However caution needs to be practiced as the technology requires the address of the user’s workplace and home.
2012.12.21
View 7582
Ph.D. students Hyowon Park and Won Ma receive Grand Prizes in Mathematics and Biology respectively.
Researchers in KAIST received best paper awards in two out of three fields at this year’s award ceremony for the “Second Annual Best Thesis Paper Award” held collectively by the Korea University Presidents’ Federation (with Chairman DaeSoon Lee) and the Korean Academy of Science and Technology (with Director GilSang Jung). Two researchers from KAIST, Hyowon Park (Department of Mathematics) and Won Ma (Department of Biology) received best paper awards. This prize, given by the both the Korea University Presidents’ Federation and the Korean Academy of Science and Technology since last year, is awarded to researchers and assistant professors who write the most outstanding thesis papers in the field of basic sciences. Park, who received the best paper award this year, did research on graph braid groups. He was supervised by Professor Kihyung Ko, who received the best supervisor reward. Ma, who received the best paper award in the field of biological science, researched about the Attention Deficit/Hyperactivity Disorder due to deficiency of the GIT1 synapse protein. His supervising professor also received the supervisor award. The award ceremony was held in the auditorium of the S-OIL headquarters in Seoul on November 30. Meanwhile, NASA researcher Jaehwa Lee received the best paper award in the field of earth science, and his supervising professor, Professor Jun Kim from Yonsei University who studies atmospheric science, received the best supervisor award.
2012.12.21
View 9561
KAIST shocks the world with its creativity
Researchers at KAIST yielded great results at the world’s leading international Human Computer Interaction Society. Professor Lee Gi Hyuk’s (Department of Computer Sciences) and Professor Bae Seok Hyung’ (Department of Industrial Design) respective teams received awards in two criteria in student innovation contest and was the only domestic university that presented their thesis at the ACM Symposium on User Interface Software. The ACM UIST holds a student innovation contest prior to its opening. This year’s topic was the pressure sensing multi touch pad of Synaptics and involved 27 prestigious universities including MIT and CMU. The KAIST team (Ki Son Joon Ph.D. candidate, Son Jeong Min M.A. candidate of Department of Computer Sciences and Woo Soo Jin M.A. candidate of Department of Industrial Design) designed a system that allows modulated control by attaching a simple structure to the pressure sensing multi touch pad. The second KAIST team (Huh Seong Guk Ph.D. candidate, Han Jae Hyun Ph.D. candidate, Koo Ji Sung Ph.D. candidate at the Department of Computer Sciences, and Choi Ha Yan M.A. candidate at Department of Industrial Design) designed a system that utilizes a highly elastic fiber to allow the sensing of lateral forces. They also created a slingshot game application which was the second most popular system. In the thesis session Professor Bae’s team (Lee DaWhee Ph.D. candidate, Son Kyung Hee Ph.D. candidate, Lee Joon Hyup M.A. candidate at Department of Industrial Design) presented a thesis that dealt with the technology that innovated the table pen for displays. The new ‘phantom pen’ solved the issue arising from the hiding effect of the pen’s contact point and the display error due to the thickness of the display. In addition the ‘phantom pen’ has the ability to show the same effects as crayons or markers in a digital environment.
2012.11.29
View 9734
International Forum on Electric Vehicles 2012
KAIST hosted the International Forum on Electric Vehicles 2012 was held on the 7th of November. IFEV provided the opportunity for domestic and international front runners of future transportation technology research to come together and discuss the direction and possibility of commercialization of electric vehicles. The keynote speaker of the forum was Hong Soon Man Director of Korea Railroad Research Institute. Lectures were given by distinguished speakers including Kim Gyung Chul Director of Korea Transportation Research Institute, Takashi Ohira Professor at Toyohashi University of Technology, Tomoyuki Shinkai Professor at Keio University, Christian Kobel Director of Development at Germany’s Bombardier, and Peter Burggraef Professor at Rheinisch University of Technology. Four topics will be debated on: Future road vehicles and wireless power technology, future high speed railway system, future maritime transportation system, and strategy and policy for green transportation technology. The IFEV is expected to yield a positive result by allowing government, academia, and industry to come together and discuss the direction of future transportation technology and its social implications. Detailed information can be found at http://gt.kaist.ac.kr/ifev2012/
2012.11.29
View 7373
Education 3.0: a change from teaching to learning
On October 16th, educationalists and Presidents from research-oriented universities around the world gathered in Seoul to attend the 2012 International Presidential Forum on Global Research Universities, where KAIST introduced its new smart learning model ‘Education 3.0’. Smart learning ‘Education 3.0’ allows students to learn from lectures given by renowned scholars through the internet and encouraged student to professor discussion. This technology was created to deal with the ever-changing classroom dynamics due to the advancement of IT technology.‘Education 3.0’ differs from the traditional teaching-based lectures in that it offers a platform for self-directed learning. KAIST is working to spread ‘Education 3.0’ by providing specialized classrooms and running an online learning platform that complements it. This spring, KAIST adopted ‘Education 3.0’ in 3 courses and received high praise from students (a rating of 4.4 out of 5.0). Hence, the number of courses was extended to 10 this fall. Through this gathering, KAIST hopes to develop cooperative connections between foreign universities to share learning platforms and contents. On October 16th, KAIST signed a MOU with Denmark’s Danmarks Tekniske Universitet (DTU) to provide a cyber-dual degree program using ‘Education 3.0’. Hence, students studying Web science and Digital Media in either KAIST or DTU can receive degrees from both schools without physically visiting them. President Suh said that “‘Education 3.0’ provides a new paradigm of learning which moves from the tradition cramming method of teaching to self-directed learning” and that this model will help the globalization of KAIST by initiating global cooperation with foreign universities. Over 60 Universities from 27 different countries attended the forum, including ULCA and Caltech from the United States, DTU from Denmark, University of Southampton and University of York from England, University of Queensland from Australia, Nanyang Technological University from Singapore and Tokyo Institute of Technology from Japan. Members from Korean Universities such as Hanyang University, Handong Global University, Sogang University and Sookmyung Women"s University also attended.
2012.10.25
View 9610
2012 Intellectual Property Rights Award Ceremony Held
The 2012 Intellectual Property Rights Award Ceremony was held at Seoul KAIST Campus. Recipients of the award included former congressmen Kim Young Sun and Lee Jeong Hyuk, and Kim Boo Kyung researcher at Electronics and Telecommunications Research Institute also representing Vooz Ltd. that created the character POOCA. The Intellectual Property Rights Award is given to an individual or a group that succeeded in utilizing, protecting, creating, and establishment of its foundation including patent, copyright, and brand. Intellectual Property Rights is viewed as of importance for future national competitiveness. The Award is organized by the Korea Patent Attorneys Association, the Korea Association of Intellectual Property Services, and KAIST and are respectively core institutions in the training of Intellectual Property Rights Experts and the creation, utilization, and the protection of intellectual property. In addition the Award is also co-organized by the KAIST Graduate School of Intellectual Property Rights (established in cooperation with KAIST and the Korean Intellectual Property Office) and the total 20 million Won of prize money is funded by Korea Institute of Intellectual Strategy and Kim Ok Lan Foundation. The Award Ceremony was held with a special lecture by the recipients. It was stressed that the evaluation process was carried out with that the decision is a silent message to the society and is also a type of market signal. Director Ko Gi Seok (Presidential Council on Intellectual Property) revealed that the candidates’ impact on the strength of national intellectual property rights was thoroughly scrutinized. In the criteria of Creation of Intellectual Property, ETRI received the award in recognition of the institution’s successful patenting and commercializing of products of Korean R&D. ETRI created a total of 251 International Patents in cooperation with ITU, ISO, IEE, etc. and also participated in a total of 9 International Standard Patent Pool, showing its active Intellectual Property management. Such efforts ranked ETRI 1st in the United States Patent Evaluation performed by the US Patent Board in 2011 out of 237 institutions. In addition Recipient of the Intellectual Property Utilization criteria, VOOZ ltd.’s Kim Boo Kyung promised the free use of their character POOCA in ETRI’s automated Korean-English translator. Researcher Kim Boo Kyung was rewarded with the award in recognition of his contribution to the domestic economy and realization of the commercialization of a copy right through licensing. Former congressman Kim Young Son received an Award in the Foundation criteria in recognition of his efforts in the establishment of the Presidential Council on Intellectual Property and the Basic Blueprints for the Intellectual Property Law. Former congressman Lee Jeong Hyuk received the same award in recognition of standardization and streamlining Intellectual Property Rights Policies. His realization and pursuit of the establishment of a balanced growth based on law for the competitiveness of businesses was the driving force behind his accomplishments.
2012.10.16
View 10235
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 91