본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ICA
by recently order
by view order
Six Organizations Join Forces to Induce Projected National Brain Institute to Daejeon
Six major organizations including KAIST have joined forces to help Daejeon City to win the government approval to build the envisioned Korean Brain Institute in Daedeok Research Complex. The six organizations signed a memorandum of understanding on cooperating in establishing the government-funded institute built within the Daedeok Research Complex in the city of Daejeon, at KAIST on Jan. 14. The six organizations are KAIST, the Daejeon City Government, Korea Research Institute of Bioscience and Biotechnology, Korea Research Institute of Standard and Science, Asan Medical Center, and SK Corp., a pioneer in effective therapeutic invention for serious brain disorders. The partnership of the six organizations is expected to bring a broad-based cooperation opportunities and create a massive synergy effect in the brain science researches and the development of new therapeutic treatment for brain disorders by combining their resources and infrastructures. The six organizations have also built an international research network with such globally-renowned brain research institutions as RIKEN, a large natural sciences research institute in Japan, Max Plank Institute in Germany, Federal Institute of Technology, Lausanne, in Switzerland and Brain Research Institute of University of Queensland in Australia. The research network is under the support and guidance of Dennis Choi, a prominent neuroscientist who once served as the President of the Society for Neuroscience and is currently a professor in the Departments of Neurology and biology at Emory University. The tentatively titled Korea Brain Institute is envisioned to help fight brain disorders and create Korea"s new growth engine, as well as lengthening life span, by conducting convergence researches in nero science, brain science and pharmacology. If the consortium of the six organizations wins the government approval to build the proposed institute within the Daedeok complex, the central government and the Daejeon city government are expected to pour a total of 329.7 billion won into the project by 2020.
2009.01.14
View 15847
Five KAIST Students Offered Internship from Qualcomm
Qualcomm Inc., a wireless telecommunications research and development company based in San Diego, California, has offered internship for five KAIST students of the Department of Electrical Engineering and Computer Science, university authorities said on Monday (Jan. 5). The five students who are graduate and doctoral students studying communication and RFID (radio frequency identification) design will be working for six months at Qualcomm"s RFIC (radio frequency integrated circuits) Department in Santa Clara, Calif., as co-researchers. These interns will receive about $7,000 a month each with other benefits. It is the first time that Qualcomm has offered internship for students outside the U.S., according to external relations officials at KAIST. Students who have shown outstanding research output during the internship period will be offered employment at Qualcomm. "Qualcomm"s internship for KAIST students is designed to help young Korean talents to become professionals who will lead global advancement in the IT sector and strengthen its research network with Korea," Seung-Soo Kim, senior director of Qualcomm Korea, was quoted as saying. Qualcomm plans to continue providing internship program for KAIST students, as well as pursuing joint research initiatives, the officials said.
2009.01.08
View 14217
Prof. Seong Publishes English Book on Reliability in Digital Control Systems
Prof. Poong-Hyun Seong of Department of Nuclear and Quantum Engineering has recently published an English-language book on reliability and risk issues in large scale safety-critical digital control systems used in complex facilities such as nuclear power plants. The book entitled “Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems” is a result of Prof. Seong’s collaboration with some KAIST graduates who used to be under his guidance. The 303-page publication has been published by Springer, one of the world’s leading publishers of academic journals, as part of the Springer Series in Reliability Engineering. The book consists of four parts; part I deals with issues related to hardware, part II software, part III human factors and finally the last part integrated systems. It can be purchased through some on-line book stores such as Amazon.com. Prof. Seong served as an editor-in-chief for Nuclear Engineering and Technology (NET), an international journal of Korean Nuclear Society (KNS), from 2003 to 2008. He also worked as a chair of the Human Factors Division (HFD) of American Nuclear Society (ANS) from 2006 to 2007. Prof. Seong is now a commissioner of Korea Nuclear Safety Commission which is the nation’s highest committee on Nuclear Safety.
2008.12.26
View 15059
Prof. Cho Wins Best Paper Award
KAIST Prof. Nam-Zin Cho of the Department of Nuclear and Quantum Engineering, won the Best Thesis Award in the nuclear reactor physics category at the 2008 Winter Meeting of the American Nuclear Society held on Nov. 9-13 in Reno, Nevada. His paper, entitled "Thermal Feedback Transient Analysis of a Pebble Fuel Based on the Two-Temperature Homogenized Model," was jointly authored by Hwi Yu and Jong-Un Kim under the guidance of Prof. Cho. Prof. Cho was elected a fellow of the American Nuclear Society in 2001 and has served as the deputy editor of the Nuclear Science and Engineering, the research journal of the American Nuclear Society, since 1999.
2008.12.09
View 13342
Two KAIST Professors Elected Fellows of APS
Profs. Sung-Chul Shin and Chang-Hee Nam of the Department of Physics, KAIST, have recently been elected the 2009 fellows of the American Physical Society (APS), university officials said on Tuesday (Dec. 2). The APS fellowship is a prestigious recognition of the two professors" outstanding academic achievements in the field of physics, the officials said. The selection criteria are known to be extremely stringent and only a small fraction of APS members become fellows. Prof. Shin was cited for his pioneering contributions to the understanding of magnetization reversal dynamics, in particular critical scaling behavior of Barkhausen avalanches of 2D ferromagnets, and discovery of novel magnetic thin films and multilayers for high-density data storage. Prof. Nam was recognized for his contributions to the theory and experiments of physical processes of high harmonic generation for the development of attosecond coherent x-ray sources and related femtosecond laser technology. The American Physical Society, founded in 1899, is the world"s second largest organization of physicists, behind the Deutsche Physikalische Gesellschaft. It has 46,000 members across the world.
2008.12.04
View 13164
2008 IEEE International Conference on Humanoid Robots Opens
The 2008 IEEE-RAS International Conference on Humanoid Robots, an international gathering to identify new research trends and technology in humanoid robotics, will open a three-day session on Monday (Dec. 1) at the Hotel Rivera and KAIST in Daejeon. The annual conference is organized by KAIST and the Robotics and Automation Society of the Institute for Electric and Electronic Engineers, a U.S.-based international non-profit, professional organization for the advancement of technology related to electricity. The conference is expected to draw a total of 200 robotics researchers from 19 different countries. Prof. Jun-Ho Oh, at the Department of Mechanical Engineering who led the creation of Korea"s first humanoid robot Hubo, is serving as general chair of the conference. Prof. Oh was named the host of the 2008 conference at the 2007 conference held at the Carnegie Melon University of the United States. The eight-year old conference was inaugurated in Boston in 2000. On the opening day of Dec. 1, seven lectures will be given on diverse areas of robotics including cognitive humanoid vision, and robot vision sensor and sensing. On the subsequent two days, a total of 110 papers will be presented. During the conference period, a variety of robots produced by six local and foreign robot makers will be on demonstration, providing opportunities for researchers and industrial robot makers to share technological ideas. Highlights of the conference will be special lectures by world-renowned robot researchers Prof. Yoshiyuki Sankai of University of Tsukuba, who has created an exoskeletal "robot suit," and Prof. Art Kuo of Univerity of Michigan who is regarded as a leading authority in dynamic walking. Following the conference, all participants are scheduled to tour Prof. Oh"s Hubo Lab and the Human-Robot Interaction Research Center, both located at KAIST.
2008.12.01
View 12768
KAIST Opens Cell Bench Research Center
KAIST opened a cell bench research center on the campus on Monday, Nov. 17, as a joint project with Samsung Electric Co. and Samsung Medical Center. On hand at the opening ceremony were about 100 persons from the three organizations, including KAIST President Nam-Pyo Suh, Samsung Electric"s Chief Technology Officer (CTO) Byung-Cheon Koh and Samsung Medical Center Vice President Hyo-Geun Lim. The newly-opened research center will be involved in the development of individually-tailored anti-cancer medicine using bio-inspired cell chips and technologies for clinical applications. Prof. Young-Ho Cho of the Department of Bio and Brain Engineering was named director of the research center. "Top-notch professionals from the electronic industry, academia and the medical community have gathered together to establish this research center. We expect the center will open a new path for the science and technology community and the industry to combine their strengths and develop innovative anti-cancer therapeutics," said KAIST President Nam-Pyo Suh at the opening ceremony. "The development of bio-cell chip technology represents a new challenge for the Samsung Electric which has focused on information technologies thus far. Through cooperation with KAIST and Samsung Medical Center, we expect to be able to develop a simple and efficient cure for cancer patients," commented Samsung Electric CTO Byung-Cheon Koh. The research center will be initially concentrating on the development of cell chips for lung cancer, one of the primary causes of death for Koreans.
2008.11.17
View 14885
KAIST Research Team Unveils Method to Fabricate Photonic Janus Balls
A research team led by Prof. Seung-Man Yang of the Department of Chemical and Biomolecular Engineering has found a method to fabricate photonic Janus balls with isotropic structural colors. The finding draws attention since the newly-fabricated photonic balls may prove useful pigments for the realization of e-paper or flexible electronic displays. The breakthrough was published in the Nov. 3 edition of the science journal "Advanced Materials." The Nov. 6 issue of "Nature" also featured it as one of the research highlights under the title of "Future Pixels." Prof. Yang"s research team found that tiny marbles, black on one side and colored on the other, can be made by "curing" suspensions of silica particles with an ultraviolet lamp. When an electric field is applied, the marbles line up so that the black sides all face upwards, which suggests they may prove useful pigments for flexible electronic displays. The researchers suspended a flow of carbon-black particles mixed with silica and a transparent or colored silica flow in a resin that polymerizes under ultraviolet light. They then passed the mixture through a tiny see-through tube. The light solidified the silica and resin as balls with differently colored regions, each about 200 micrometers in diameter. Over the last decades, the development of industrial platforms to artificially fabricate structural color pigments has been a pressing issue in the research areas of materials science and optics. Prof. Yang, who is also the director of the National Creative Research Initiative Center for Integrated Optofluidic Systems, has led the researches focused on fabrication of functional nano-materials through the process of assembling nano-building blocks into designed patterns. The "complementary hybridization of optical and fluidic devices for integrated optofluidic systems" research was supported by a grant from the Creative Research Initiative Program of the Ministry of Education, Science & Technology.
2008.11.12
View 13014
KAIST Ranks 95th among World Universities
Oct. 13, 2008 --KAIST is ranked 95th among Top 200 Universities of the World this year, scoring a notable increase from last year"s ranking of 132nd. KAIST, Seoul National University which was placed 50th, and POSTECH ranked 188th became the only three institutions of higher education in Korea to make it to the list, called "The Times Higher Education -- QS World University Rankings." KAIST"s advancement was more conspicuous in specific area evaluations. In the area of Engineering and Information Technology, it is ranked 34th (49th last year), in Natural Sciences 46th (86th last year), and in Biological Sciences and Biotechnology 134th (166th last year). While North America dominates the ranking with 42 universities on the list, Europe and Asia Pacific are also well represented with 36 and 22 institutions, respectively. The list, compiled by The Times (of London) newspaper annually, is topped by Harvard University (USA), followed by Yale University (USA) and University of Cambridge (United Kingdom). Last year, only KAIST and SNU were included in the top 200 list. This year, Yonsei University raised its ranking to 203rd from last year"s 223rd while Korea University improved from 243rd to 236th, showing overall improvement of universities in Korea. Again this year, Japan and China had most of the top ranked universities in Asia, each sharing three in the top 50. University of Tokyo, ranked 19th, led all Japanese universities; Kyoto University was placed 25th and Osaka University 44th. University of Hong Kong was listed 26th, followed by Hong Kong University of Science and Technology on 39th and the Chinese University of Hong Kong on 42nd. The Times Higher Education--QS World University Rankings evaluates four main categories: quality of research, globalization, and quality of education and work of graduates in society. The evaluation also considers academic peer review, citations per faculty, recruiter review, international faculty, international students and faculty-student ratio. QS Top 100 Universities 2008 Source: QS Quacquarelli Symonds (www.topuniversities.com) Copyright?004-2008QSQuacquarelliSymondsLtd. 1 HARVARD University United States 2 YALE University United States 3 University of CAMBRIDGE United Kingdom 4 University of OXFORD United Kingdom 5 CALIFORNIA Institute of Technology (Calt... United States 6 IMPERIAL College London United Kingdom 7 UCL (University College London) United Kingdom 8 University of CHICAGO United States 9 MASSACHUSETTS Institute of Technology (M... United States 10 COLUMBIA University United States 11 University of PENNSYLVANIA United States 12 PRINCETON University United States 13= DUKE University United States 13= JOHNS HOPKINS University United States 15 CORNELL University United States 16 AUSTRALIAN National University Australia 17 STANFORD University United States 18 University of MICHIGAN United States 19 University of TOKYO Japan 20 MCGILL University Canada 21 CARNEGIE MELLON University United States 22 KING"S College London United Kingdom 23 University of EDINBURGH United Kingdom 24 ETH Zurich (Swiss Federal Institute of T... Switzerland 25 KYOTO University Japan 26 University of HONG KONG Hong Kong 27 BROWN University United States 28 ?ole Normale Sup?ieure, PARIS France 29 University of MANCHESTER United Kingdom 30= National University of SINGAPORE(NUS) Singapore 30= University of CALIFORNIA, Los Angeles (U... United States 32 University of BRISTOL United Kingdom 33 NORTHWESTERN University United States 34= ?OLE POLYTECHNIQUE France 34= University of BRITISH COLUMBIA Canada 36 University of California, BERKELEY United States 37 The University of SYDNEY Australia 38 The University of MELBOURNE Australia 39 HONG KONG University of Science & Techno... Hong Kong 40 NEW YORK University (NYU) United States 41 University of TORONTO Canada 42 The CHINESE University of Hong Kong Hong Kong 43 University of QUEENSLAND Australia 44 OSAKA University Japan 45 University of NEW SOUTH WALES Australia 46 BOSTON University United States 47 MONASH University Australia 48 University of COPENHAGEN Denmark 49 TRINITY College Dublin Ireland 50= Ecole Polytechnique F??ale de LAUSANNE... Switzerland 50= PEKING University China 50= SEOUL National University Korea, South 53 University of AMSTERDAM Netherlands 54 DARTMOUTH College United States 55 University of WISCONSIN-Madison United States 56 TSINGHUA University China 57 HEIDELBERG Universit? Germany 58 University of CALIFORNIA, San Diego United States 59 University of WASHINGTON United States 60 WASHINGTON University in St. Louis United States 61 TOKYO Institute of Technology Japan 62 EMORY University United States 63 UPPSALA University Sweden 64 LEIDEN University Netherlands 65 The University of AUCKLAND New Zealand 66 LONDON School of Economics and Political... United Kingdom 67 UTRECHT University Netherlands 68 University of GENEVA Switzerland 69 University of WARWICK United Kingdom 70 University of TEXAS at Austin United States 71 University of ILLINOIS United States 72 Katholieke Universiteit LEUVEN Belgium 73 University of GLASGOW United Kingdom 74 University of ALBERTA Canada 75 University of BIRMINGHAM United Kingdom 76 University of SHEFFIELD United Kingdom 77 NANYANG Technological University Singapore 78= DELFT University of Technology Netherlands 78= RICE University United States 78= Technische Universit? M?CHEN Germany 81= University of AARHUS Denmark 81= University of YORK United Kingdom 83= GEORGIA Institute of Technology United States 83= The University of WESTERN AUSTRALIA Australia 83= University of ST ANDREWS United Kingdom 86 University of NOTTINGHAM United Kingdom 87 University of MINNESOTA United States 88 LUND University Sweden 89 University of CALIFORNIA, Davis United States 90 CASE WESTERN RESERVE University United States 91= Universit?de Montr?l Canada 91= University of HELSINKI Finland 93= Hebrew University of JERUSALEM Israel 93= Ludwig-Maximilians-Universit? M?chen Germany 95 KAIST - Korea Advanced Institute of Scie... Korea, South 96 University of VIRGINIA United States 97 University of PITTSBURGH United States 98 University of CALIFORNIA, Santa Barbara United States 99= PURDUE University United States 99= University of SOUTHAMPTON United Kingdom
2008.10.14
View 15929
KAIST Team Identifies Nano-scale Origin of Toughness in Rare Earth-added Silicon Carbide
A research team led by Prof. Do-Kyung Kim of the Department of Materials Science and Engineering of KAIST has identified the nano-scale origin of the toughness in rare-earth doped silicon carbide (RE-SiC), university sources said on Monday (Oct. 6). The research was conducted jointly with a U.S. team headed by Prof. R. O. Ritchie of the Department of Materials Science and Engineering, University of California, Berkeley. The findings were carried in the online edition of Nano Letters published by the American Chemical Association. Silicon carbide, a ceramic material known to be one of the hardest substances, are potential candidate materials for many ultrahigh-temperature structural applications. For example, if SiC, instead of metallic alloys, is used in gas-turbine engines for power generation and aerospace applications, operating temperatures of many hundred degrees higher can be obtained with a consequent dramatic increase in thermodynamic efficiency and reduced fuel consumption. However, the use of such ceramic materials has so far been severely limited since the origin of the toughness in RE-SiC remained unknown thus far. In order to investigate the origin of the toughness in RE-SiC, the researchers attempted to examine the mechanistic nature of the cracking events, which they found to occur precisely along the interface between SiC grains and the nano-scale grain-boundary phase, by using ultrahigh-resolution transmission electron microscopy and atomic-scale spectroscopy. The research found that for optimal toughness, the relative elastic modulus across the grain-boundary phase and the interfacial fracture toughness are the most critical material parameters; both can be altered with appropriate choice of rare-earth elements. In addition to identifying the nano-scale origin of the toughness in RE-SiC, the findings also contributed to precisely predicting how the use of various rare-earth elements lead to difference in toughness. University sources said that the findings will significantly advance the date when RE-SiC will replace metallic alloys in gas-turbine engines for power generation and aerospace applications.
2008.10.08
View 13937
KAIST Professor Exposes Structural Dynamics of Protein in Solution
-- Dr. Hyot-Cherl Ihee"s 3-Year Research Is Valuable in Pharmaceutical Application Prof. Hyot-Cherl Ihee and his team at the Department of Chemistry, KAIST, has successfully unveiled the structural dynamics of protein in solution as a result of more than three years" research work. Nature Methods, a sister publication of the authoritative science magazine Nature, published the treatise, titled "Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering" in its Sept. 22 online edition. The research paper will be carried in the magazine"s printed version in its October edition, according to Dr. Lee who is its correspondence author. In May 2005, Prof. Ihee successfully photographed the structural dynamics of protein in solid state and his findings were published in the Proceedings of National Academy of Science of the United States. As protein normally exists in human body in solution, not in solid state, he directed his research to developing the technology to capture protein"s dynamics in resolved state. In July that year, Prof. Ihee succeeded in measuring the structural changes of simple organic molecules in real time. He further developed the technology to uncover the structural dynamics of hemoglobin, myoglobin and cytochrome C. Prof. Ihee"s research, helped with the Education-Science-Technology Ministry"s Creative Research Promotion Fund, can be applied to new pharmaceutical development projects as well as nanotechnology development, according to KAIST officials. Prof. Ihee who earned his doctorate at California Institute of Technology in 1994 began teaching at KAIST in 2003. He won the Young Scientist Award given by the Korean government in 2006.
2008.09.22
View 12621
KAIST Professor Finds Paradox in Human Behaviors on Road
-Strange as it might seem, closing roads can cut delays A new route opened to ease traffic jam, but commuting time has not been reduced.Conversely, motorists reached their destinations in shorter times after a big street was closed. These paradoxical phenomena are the result of human selfishness, according to recent findings of a research team led by a KAIST physics professor. Prof. Ha-Woong Jeong, 40, at the Department of Physics, conducted a joint research with a team from Santa Fe Institute of the U.S. to analyze the behaviors of drivers in Boston, New York and London. Their study found that when individual drivers, fed with traffic information via various kinds of media, try to choose the quickest route, it can cause delays for others and even worsen congestion. Prof. Jeong and his group"s study will be published in the Sept. 18 edition of the authoritative Physical Review Letters. The London-based Economist magazine introduced Prof. Jeong"s finding in its latest edition. Prof. Jeong, a pioneer in the study of "complex system," has published more than 70 research papers in the world"s leading science journals, including Nature, PNAS and Physical Review Letters. "Initially, my study was to reduce annoyance from traffic jam during rush hours," Prof. Jeong said. "Ultimately, it is purposed to eliminate inefficiency located in various corners of social activities, with the help of the network science." The Economist article read (in part): "...when individual drivers each try to choose the quickest route it can cause delays for others and even increase hold-ups in the entire road network. "The physicists give a simplified example of how this can happen: trying to reach a destination either by using a short but narrow bridge or a longer but wide motorway. In their hypothetical case, the combined travel time of all the drivers is minimized if half use the bridge and half the motorway. But that is not what happens. Some drivers will switch to the bridge to shorten their commute, but as the traffic builds up there the motorway starts to look like a better bet, so some switch back. Eventually the traffic flow on the two routes settles into what game theory calls a Nash equilibrium, named after John Nash, the mathematician who described it. This is the point where no individual driver could arrive any faster by switching routes. "The researchers looked at how this equilibrium could arise if travelling across Boston from Harvard Square to Boston Common. They analysed 246 different links in the road network that could be used for the journey and calculated traffic flows at different volumes to produce what they call a “price of anarchy” (POA). This is the ratio of the total cost of the Nash equilibrium to the total cost of an optimal traffic flow directed by an omniscient traffic controller. In Boston they found that at high traffic levels drivers face a POA which results in journey times 30% longer than if motorists were co-ordinated into an optimal traffic flow. Much the same thing was found in London (a POA of up to 24% for journeys between Borough and Farringdon Underground stations) and New York (a POA of up to 28% from Washington Market Park to Queens Midtown Tunnel). "Modifying the road network could reduce delays. And contrary to popular belief, a simple way to do that might be to close certain roads. This is known as Braess’s paradox, after another mathematician, Dietrich Braess, who found that adding extra capacity to a network can sometimes reduce its overall efficiency. "In Boston the group looked to see if the paradox could be created by closing any of the 246 links. In 240 cases their analysis showed that a closure increased traffic problems. But closing any one of the remaining six streets reduced the POA of the new Nash equilibrium. Much the same thing was found in London and New York. More work needs to be done to understand these effects, say the researchers. But even so, planners should note that there is now evidence that even a well intentioned new road may make traffic jams worse."
2008.09.18
View 13307
<<
첫번째페이지
<
이전 페이지
41
42
43
44
45
46
47
48
49
50
>
다음 페이지
>>
마지막 페이지 52