본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
research
by recently order
by view order
Inexpensive Separation Method of Graphene Developed
The problem with commercializing graphene that is synthesized onto metals over a wide area is that it can not be separated from the metal. However, a groundbreaking separation technology which is both cheap and environment friendly has been developed. Prof. Taek soo Kim and Prof. Byung Jin Cho"s research teams have conducted this research under the support of the Global Frontier program and Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research results have been posted on the online news flash of Nano Letters on februrary 29th. (Thesis title: Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process) The research has generated exact results on the interfacial adhesive energy of graphene and its surface material for the first time. Through this, the catalyst metal are no longer to be used just once, but will be used for an infinite number of times, thereby being ecofriendly and efficient. Wide area graphine synthesized onto the catalyst meatal are used in various ways such as for display and for solar cells. There has been much research going on in this field. However, in order to use this wide area graphene, the graphene must be removed from the catalyst metal without damage. Until now, the metal had been melted away through the use of chemical substances in order to separate the graphene. However, this method has been very problematic. The metal can not be reused, the costs are very high, much harmful wastes were created in the process of melting the metals, and the process was very complicated. The research teams of Professors Taek Su Kim and Byung Jin Cho measured the interfacial adhesive energy of the synthesized graphene and learned that it could be easily removed. Also, the mechanically removed graphene was successfully used in creating molecular electronic devices directly. This has thus innovatively shortened the graphene manufacturing process. Also, it has been confirmed that the metalic board can be reused multiple times after the graphene is removed. A new, ecofriendly and cost friendly method of graphene manufacturing has been paved. Through this discovery, it is expected that graphene will become easier to manufacture and that the period til the commercialization date of graphene will therefore be greatly reduced Prof. Cho stated " This reserach has much academical meaning significance in that it has successfully defined the surfacial adhesive energy between the graphene and its catalyst material and it should receive much attention in that it solved the largest technical problem involved in the production of graphene.
2012.04.04
View 12594
New Era for Measuring Ultra Fast Phenomena: Atto Science Era
Domestic researchers successfully measured the exact status of the rapidly changing Helium atom using an atto second pulse. Thanks to this discovery, many ultrafast phenomena in nature can now be precisely measured. This will lead to an opening of a new "Atto Science" era. Prof. Nam Chang Hee led this research team and Ph.d Kim Kyung Taek and Prof. Choi Nak Ryul also participated in this research. They have conducted the research under the support of the Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research result was published in the prestigious journal "Physical Review Letters" on March 2nd. (Title: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics) Prof. Nam Chang Hee"s research team used atto second pulse to measure the ultrafast photoionization. His team used atto second X-ray pulse and femto second laser pulse to photoionize Helium atoms, and measure the wave speed of the produced electron to closely investigate the ultrafast photoionization process. Atom"s photoionization measurement using an atto second pulse was possible using the research team"s high-energy femto second laser and high-performance photo ion measurement device. This research team succeeded in producing the shortest 60 atto second pulse in the world using high-harmonic waves. The research team used high-power femto second laser to produce atto second high-harmonic pulse from argon gas, used this to photoionize Helium atoms, and measured the ultrafast photoionization of the atoms. Prof. Nam Chang Hee said, "This research precisely measured the exact status of rapidly changing Helium atoms. I am planning to research on measuring the ultrafast phenomena inside atoms and molecules and controlling the status of the atoms and molecules based on the research result."
2012.04.04
View 9587
Professor Sang-Min Bae appears on EBS Global Theme Travel.
"We want to present "hope" by designing schools and homes for the third-world countries, while considering the culture of the nation.” Professor Bae and his team went to Ethiopia, Africa, for "Design for Social Donation and Design Research for isolated third-world nations". Professor Bae commented that, "We have visited for preparatory investigation, experiencing and investigating the life and cultures of the third-world nations in order to design schools and homes." He continued, "From this visit, we want to develop adequate technology catered for the locals and create a design guideline." He added "We also want to propose a new model using design and technology that contributes to social welfare". Meanwhile, EBS team accompanied to cover the report and was broadcasted through "EBS Global Theme Travel.
2012.03.06
View 7867
Annual Future Knowledge Service International Symposium
Knowledge Service Research preparing for the future knowledge based society has been academically publicized. The First Annual Future Knowledge Service International Symposium was held in COEX Grand Ball Room Hall by KAIST’s department of Knowledge Service Engineering. Knowledge Service Engineering is a core component to the future knowledge based society and is the convergent result of decision making, recognition sciences, artificial intelligence, IT, and other knowledge management technologies from each of the industries. Therefore Knowledge Service Engineering will innovate the cooperation and communication between humans and machines thereby forming the center point of the development of knowledge society. The symposium was attended by 9 important figures from domestic and foreign academia, government representative, and key figures from industries. The symposium was based around debates concerning the role of the Knowledge Service Engineering in the future knowledge based society. The key note speaker was Chairman of Korea Science and Technology Information Research Institute Park Young Suh and the theme of the speech was ‘Change in Information Environment and Knowledge Service’. Director of National IT Industry Promotion Agency Kang Hyun Gu gave a lecture on the topic of ‘Important Knowledge Service Policies by National IT Industry Promotion Agency’. And from industry experts, Bradley K. Jensen (Manager of Microsoft Industry-Education Cooperation), Lee Kang Yoon (Research Director at IBM), Choi Yoon Shik (Head of Asia Future Human Resource Institute) proposed a direction for research and gave their account on recent trends of knowledge service from the perspective of onsite experience. Academic experts like Fred D. Davis (Professor at State University of Arkansas), Jussi Kantola (Professor at KAIST), Kim Young Gul (Professor at KAIST Management University), Yoon Wan Chul (Professor at KAIST Knowledge Service Engineering) gave the recent trends in academic research. The symposium was held in 3 sessions: ▲Policy of Korean Government ▲Academic Research Trend ▲Recent Trend and Application. More information can be found at http://kss.kaist.ac.kr
2012.01.31
View 8430
Quantum Mechanical Calculation Theory Developed
An Electron Density Functional Calculation Theory, based on the widely used quantum mechanical principles and yet accurate and with shortened calculation period, was developed by Korean research team. *Electron Density Functional Calculation Theory: Theory that proves that it is possible to calculate energy and properties with only simple wave equations and electron densities. The research was conducted by Professor Jeong Yoo Sung (Graduate School of EEWS) and Professor William Goddard with support from WCU Foster Project initiated by Ministry of Education, Science and Technology and Korea Research Foundation. The result was published in the Proceedings of the National Academy of Sciences Journal. The research team corrected the error when performing quantum calculations that arises from the length of calculation time and incorrect assumptions and developed a theory and algorithm that is more accurate and faster. The use of wave equations in quantum mechanical calculations results in high accuracy but there is a rapid increase in calculation time and is therefore difficult to implement in large molecules with hundreds, or thousands of atoms. By implementing a low electron density variable with relatively less calculation work, the size of calculable molecule increases but the accuracy decreases. The team focused on the interaction between electrons with different spins to improve upon the speed of calculation in the conventional accurate calculation. The team used the fact that the interaction between electrons with different spins increases as it comes closer together in accordance with the Pauli’s Exclusion Principle. In addition the interaction between electrons are local and therefore can ignore the interactions between far away electrons and still get the total energy value. The team also took advantage of this fact and developed the algorithm that decreased calculation time hundredth fold. Professor Jeong commented that, “So far most of the domestic achievements were made by focusing on integrative researches by calculation science and material design communities but these involved short time frames. In areas that required lengthy time frames like fundamentals and software development, there was no competitive advantage. However this research is significant in that a superior solution was developed domestically”.
2012.01.31
View 10263
'Scientist-Engineer of the Month' for December: Professor Choi Joon Ho
Professor Choi Joon Ho (department of Biological Sciences) was made ‘Scientist-Engineer of December’ for his discovery of new gene (twenty-four) that helps biorhythm and proving that this gene helps control biorhythm. Professor Choi published 100 dissertations over the past 25 years and made significant advancements in the field of molecular virus and neurobiology. In 1995 Professor Choi uncovered the fact that the NS3 protein in C type hepatitis function as RNA helicase thereby opening the path to developing a cure for C type hepatitis; this is an international patent with Chiron corporation. The result was published in Biochemical and Biophysical Research Communications Journal and was the most domestically referred to dissertation in biological sciences in 1999. In addition Professor Choi published in Nature magazine in 1999, a dissertation that uncovered the fact that the DNA of papillomar virus has another protein (hSNF5) that direct it apart from ordinary proteins. In 2000~2005 Professor Choi published many dissertations in journals like Immunity, Cancer Research, Molecular and Cellular Biology, Oncogene, Journal of Virology, and etc. Professor Choi screened over 10,000 species of pomace fly mutations and discovered the twenty-four gene that affects the biorhythm of pomace flies. He analyzed this gene further and found a new function that was different from known biorhythm mechanisms. This research allowed a better understanding of biological clock of pomace flies and therefore was another step towards better understanding the control mechanism of human biological clock.
2012.01.31
View 8786
Closer to the Dream: Graphene
A technique that allows easy and larger observation area of graphene’s crystal face was developed by Korean Research Team. The research team, led by Professor Jeong Hui Tae (KAIST), consists of Doctorate candidate Kim Dae Woo, Dr. Kim Yoon Ho (primary author), Doctorate candidate Jeong Hyun Soo. The research is supported by WCU (World Class Research University) Development Plan, Mid-Aged Researcher Support Business and was published in the online edition of Nature Nanotechnology. (Dissertation: Direct visualization of large0area graphene domains and boundaries by optical birefringency) Professor Jeong’s team used the optical property of the liquid display used in LCD to visualize the size and shape of the single crystals along a flat surface. The visualization of the single crystal allowed the measurement of a near theoretical value of electrical conductivity of graphene. Graphene has great electrical conductivity, transparent, mechanically stable, flexible, and is therefore regarded as the next generation electrical material. However the polycrystalinity of graphene meant that the actual electrical, mechanical properties were lower than the theoretical values. The reason was thought to be because of the size of the crystal faces and boundary structures. Therefore, in order to create graphene that has good properties, observing the domain and boundary of graphene crystal faces is essential. The new technique developed by the research team is another step towards commercializing transparent electrodes, flexible display, and electric materials like solar cells.
2012.01.31
View 9555
MOU: KAIST-Korea Internet & Security Agency
KAIST signed a MOU with the Korea Internet & Security Agency for the development of IT and International Security. As a result of the MOU interaction in ▲Exchange of personnel and materials for cooperative research for information protection ▲Information protection policy and technology ▲Education and training for developing information protection personnel, will be increased. Director of Cyber Security Research Center Joo Dae Joon commented, “Cyber-attack on national infrastructure like DDOS attacks can threaten the nation’s system” and that “the two institutes will establish a response system against cyber-attacks and train experts in information protection”.
2012.01.31
View 6916
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 7962
2011 International Presidential Forum on Global Research Universities
KAIST’s 4th International Presidential Forum Held in Seoul on November 8, 2011 The largest annual congregation of university presidents in Asia invited leaders from academia, government, and industry for talks on issues related to higher education in the Age of Globalization. Borderless and Creative Education: the ability to cross borders a crucial key to dominate the information era Seoul, Republic of Korea, November 8, 2011—The Korea Advanced Institute of Science and Technology (KAIST) hosted the “2011 International Presidential Forum on Global Research Universities (IPFGRU)” on Tuesday, November 8, 2011 at the Millennium Hilton Hotel in Seoul. With more than 120 participants from 44 institutions in 27 countries present, the full-day forum provided participants with an opportunity to discuss challenges and responsibilities facing higher education in a time of globalization that has resulted from an ever-growing demand for technological innovation. In his plenary speech, Dr. Robert Birgeneau, Chancellor of UC Berkeley, stressed that “Higher educational intuitions must be prepared to drive innovation and enhance competitiveness by educating a highly trained workforce that will have the critical skills necessary to solve problems and lead in today’s interdependent world.” “Finding solutions to the world’s most challenging problems will depend on the ability to cross borders: national borders, border between different fields of discipline and research, and borders between academe, government, and industry,” said Chancellor Birgeneau to address the importance of “borderless and creative education,” the theme of the forum. Other major keynote speakers were Jörg Steinbach, President of Technische Universität Berlin, Lars Pallesen, President of Technical University of Denmark, Paul F. Greenfield, President of University of Queensland, Marcelo Fernandes de Aquino, President of the University of the Sinos Valley (UNISINOS), and Eden Woon, Vice President of the Hong Kong University of Science and Technology. Dr. Nam-Pyo Suh, President of KAIST, gave talks on the university’s new education plan, “The I-Four Education,” at the afternoon session. The four Is are information technology (IT), independent learning, integrated knowledge acquisitions, and an international learning environment. “In this format, there are no formal lectures,” President Suh explained. “A group of students learn together by using the materials available on the internet, doing homework and conducting experiments together. Pre-recorded lectures are delivered in English by I-Four professors, some of them regular KAIST professors and some professors in other countries who participate in the I-Four Program as consulting professors.” He added, “The overall purpose of the I-Four Education Program is to encourage students to learn independently, gain exposure to the best lectures by the most eminent professors in the world, accelerate the development of a global frame of reference in the students by dealing with information available throughout the world, and provide an integrated learning environment by using diverse examples from many disciplines to achieve understanding of basic principles.” The 2011 IPFGRU, the fourth forum since its inception in 2008, rose to prominence in the past years as an international network for leaders of research universities from around the world to share information and exchange views about contemporary issues in higher education. At this year’s forum, entitled “Borderless and Creative Education,” speakers took a deeper look into the transitions and transformations many research universities are undergoing today, delving into the following topics: the development of e-learning and cyber campuses; increased student mobility and international collaborations; multi-disciplinary and convergence approaches in research and education; and methodology of nurturing future global leaders. Participants also discussed experiences and accomplishments earned from their own endeavors to accommodate such changes and presented ways to strengthen internationalization and improve the academic and research competitiveness of universities. The 2011 International Presidential Forum on Global Research Universities (IPFGRU) was organized by KAIST and sponsored by the Ministry of Education, Science and Technology, POSCO, Hyundai Motor Company, Samsung Heavy Industries, S-Oil, and Elsevier Korea.
2011.11.09
View 11884
New York Times, "First, Catch Your Faculty-A Recipe for Excellence"
The World Bank has recently published a new book entitled “The Road to Academic Excellence: The Making of World Class Research Universities.” The report (book) examined the recent experience of 11 universities in 9 countries (for Korea, it sampled Pohang University of Science and Technology, established in 1986) that have undergone transformations in order to become world-class universities. The book has received a wide coverage from the media all around the world since its publication in late September, among others, the latest article by New York Times (NYT), dated October 16, 2011. The gist of the book, i.e., what elements are required should a research university to become “truly prestigious” in the global scene, is well introduced by the NYT article, and here’s the link: New York Times, “First, Catch Your Faculty-A Recipe for Excellence” http://www.nytimes.com/2011/10/17/world/americas/17iht-educLede17.html
2011.10.17
View 10217
Fusion performing arts, called space musical, 'NARO' performed at KAIST
In commemoration of the 6th anniversary of the establishment of the Graduate School of Cultural Technology, KAIST organized an English musical show on space at the Auditorium on the 29th and 30th of September. The name of the musical was NARO. The musical was funded by the ‘NaDa Center’ operated by KAIST’s Graduate School of Cultural Technology. The musical was created with participation from adolescents, which told a tale about a genius boy Naro’s journey in space. The musical was composed of two parts, and the basic storyline was about Naro who conducts research based on space, and his friends went on a time travel to the constellation Scorpios; more specifically, it was a Korean traditional children’s story about a brother and sister who became the sun and the moon. Naro and his friends prevent the plot of Tyran, a villan, who plans on destroying the space and Earth by inducing a red giant star, Antares. In preparation for the musical, NaDa Center selected 14 students ranging from elementary to high school students during March of 2011. The selected students met every Saturday and Sunday from March to September for practice; a gargantuan commitment. The theme of the musical is space, the future, and hope, and it does not utilize any stage settings. Instead, it attempts the incorporation of high technology into the stage by using interactive video, laser art, and specially built props. In addition, the entire process from script to performance and advertisement was utilized as an education model to suggest a good fusion between science and technology and cultural arts. The musical ‘NARO’ is a collective effort. Professor Won Kwan Yeon who pioneered the field of Cultural Technology directed the musical, Professor Koo Bon Chul was in charge of the script and music composition, acting was charged to Lee Min Ho, choreography was charged to Han Eun Kyung, astrological reference was charged to Park Seok Jae among other students in the Graduate School of Cultural Technology. Members of the KAIST Acting Club ‘Lee Bak Teo’, Jeong Soo Han, Son Sharon and graduate of Chung Nam National University with vocal music major Yang Su Ji also made appearances. The Space Musical ‘NARO’ was funded by the Korea Astronomy and Space Science Institute, Korea Aerospace Research Institute, and LG School of Multi Culture.
2011.10.10
View 9833
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 26