본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
IR
by recently order
by view order
Professor Haeng-Ki Lee appointed as "ICCES Distinguished Fellow"
Professor Haeng-Ki Lee Professor Haeng-Ki Lee from the Department of Civil and Environmental Engineering at KAIST has been appointed as “Distinguished Fellow” and has also received the “Outstanding Research Award” at the International Conference on Computational & Experimental Engineering and Sciences (ICCES). Founded in 1986, ICCES is regarded as one of the most prestigious international conferences in the field of computational mechanics and experimental engineering. The Nominating Committee at ICCES recommends the appointment of a distinguished member who has made significant contributions to the development of computational mechanics and experimental engineering. Professor Lee was the first Korean who received such title. Furthermore, he was the recipient of the “Outstanding Research Award” presented by ICCES for his academic research on damage mechanics of complex systems. Professor Lee is currently serving as the Head of the Department of Civil and Environmental Engineering at KAIST and the Director of BK Plus Agency, a Korean government’s research program. He received an award from the Minister of Science, ICT and Future Planning in 2013 for the promotion of science and technology.
2014.07.02
View 11616
Forbes Asia: 48 Heroes of Philanthropy
Mun-Sul Jeong Hui-Jeong Park Forbes Asia, an American business magazine covering the latest news on Asian markets, politics, business, and finance, announced the list of 48 philanthropists in the Asia-Pacific region in its July 21, 2014 issue. Four Koreans made the list: Mun-Sul Jeong (a former chairman of KAIST's Board of Trustees), Hui-Jeong Park (a wife of the late Dr. Geun-Chul Ryu, a philanthropist who gave the funds to build the Sports Complex in KAIST campus), Yuna Kim (a former Olympics figure skater and a gold and silver medalist), and Nam-Kyu Min (the chairman of JK Group, a plastics and petrochemical products manufacturer). Mun-Sul Jeong, the founder of Mirae Corp., a semiconductor equipment manufacturing company, donated $21 million to KAIST for brain science research this year. He also donated $235 million to KAIST in 2001 for convergence research in information and business technology. Hui-Jeong Park, a former professor of nursing at Korea University, endowed a $100,000 scholarship fund for KAIST students in January 2014. Her late husband, Dr. Geun-Chul Ryu, contributed over $55 million in real estate to KAIST, allowing the university to have a new sports facility. He was an eminent doctor of Oriental medicine in Korea and also served as a professor at KAIST. For more, please click on the link below: Forbes Asia, July 21, 2014 “48 Heroes of Philanthropy” http://www.forbes.com/sites/johnkoppisch/2014/06/25/48-heroes-of-philanthropy-3/
2014.06.26
View 9449
KAIST doctoral student wins prize at 2014 International Military Science and Technology Fair
Min-Kyu Yoo (far left), a doctoral student in the Department of Materials Science Engineering, KAIST, received a silver prize at the 2014 International Military Science and Technology Fair held from May 29 to June 1, 2014 at KINTEX, Ilsan City, Korea. Yoo presented a paper on aluminum composite materials that were reinforced by carbon nanotubes. Carbon nanotubes reinforced aluminum composite materials have strong mechanical properties, and some nations have used them to manufacture battle tanks. Aluminum generates hydrogen in an alkaline solution. Utilizing this property and the galvanic corrosion of carbon nanotubes and aluminums, Yoo developed a hydrogen energy system that is fueled with composite materials of carbon nanotube reinforced aluminum. He produced 5 kW electric power and maintained it 22 days using 10 kg of the composite materials for a proton exchange membrane fuel cell and its auxiliary power system. Yoo’s research will alleviate the difficulty of transporting fuels during wartime and can be applied to the development of an auxiliary power system for next generation aircrafts and battle tanks.
2014.06.24
View 9149
ICISTS-KAIST 2014 (International Conference for the Integration of Science, Technology, and Society)
Close your eyes and imagine a life without science and technology, a life without cars, electricity, and the Internet. Having trouble? Now open your eyes to the real world with science and technology: Biochemical weapons wreaking havoc in Syria, the disaster at Fukushima poisoning the Earth. This ironic twist, however, often goes unseen—a failure to recognize the nature of science. You realize that science and technology possess the power to shift entire paradigms, and as generators of such an impetus, that they require much inspection. Are you sure, though? How much do you actually know about science? And so, ICISTS-KAIST 2014 asks: Is science truly leading progress? Meeting its 10th ICISTS-KAIST 2014 will scrutinize science on top of a social and cultural context and pave way for discussions that envision a better future. On a wonderful five-day journey beginning on August 4th , KAIST campus will once again open doors for future leaders to meet people and get inspired. Meet People, Get Inspired 400 participants from over 100 universities and 25 countries engage in lectures and discussions led by the world’s leading experts Establish a global network through culture night and beer party Details for ICISTS-KAIST 2014: Theme: Does Science Lead Progress? Date: Sunday, August 4, 2014 – Friday, August 8, 2014 Place: KAIST Campus and ICC Hotel, Daejeon Application: June 2, 2014 – July 11, 2014 Please apply online at www.icists.org Contact: help@icists.org, www.fb.com/ICISTSKAIST
2014.06.05
View 6201
President Steve Kang Received an Honorary Degree from Fairleigh Dickinson University
At its 71st Commencement held on May 20, 2014, Fairleigh Dickinson University (FDU) in Teaneck, NJ, conferred an honorary doctorate (Doctor of Science) on President Steve Kang. FDU is President Kang’s alma mater. He received a bachelor’s degree from FDU in electrical engineering in 1970. For details, please refer to the press statement released by FDU on May 20, 2014. Fairleigh Dickinson University holds 71st Commencement on May 20 During the Commencement ceremony, the University will confer honorary degrees on Joyce Carol Oates, Rachel Robinson, and Sung Mo “Steve” Kang (BSEE’70). http://inside.fdu.edu/prpt/71st_commencement.html
2014.05.25
View 7834
Professor Jae-Kyu Lee Elected to Head the Association for Information Systems
Jae Kyu Lee, HHI (Hyundai Heavy Industries, Co., Ltd.) Chair Professor, College of Business at KAIST, was elected to lead the world major academic society, Association for Information Systems (AIS), from July 2015 to June 2016. Professor Lee will be the first Korean to serve the organization as president. From July 2014 to June 2015, he will serve as president-elect. Currently, Professor Lee is the Director of EEWS (Energy, Environment, Water, and Sustainability) Research Center at KAIST, focusing on research and development in finding solutions to critical issues facing humanity. He also played a pivotal role in the conclusion of a memorandum of understanding between HHI and KAIST in June 2013 to establish HHI-KAIST EEWS Research Center within the KAIST campus. The AIS is the premier professional association for individuals and organizations who lead the research, teaching, practice, and study of information systems worldwide. A news article on his appointment: Asian Scientist, May 16, 2014 Korean Engineer To Lead The Association For Information Systems http://www.asianscientist.com/academia/korean-engineer-lead-association-information-systems-2014/
2014.05.19
View 11210
KAIST Made Great Improvements of Nanogenerator Power Efficiency
The energy efficiency of a piezoelectric nanogenerator developed by KAIST has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices. NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body. Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators. However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO). Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2cm x 2cm). “We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights,” Keon Jae Lee explained. The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency. Lee further commented, “Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources.” The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator. This research result, entitled “Highly-efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates,” was published as the cover article of the April issue of Advanced Materials. (http://onlinelibrary.wiley.com/doi/10.1002/adma.201305659/abstract) YouTube Link: http://www.youtube.com/watch?v=G_Fny7Xb9ig Over 100 LEDs operated by self-powered flexible piezoelectric thin film nanogenerator Flexible PZT thin film nanogenerator using inorganic-based laser lift-off process Photograph of large-area PZT thin film nanogenerator (3.5cm × 3.5cm) on a curved glass tube and 105 commercial LEDs operated by self-powered flexible piezoelectric energy harvester
2014.05.19
View 14677
Professor Jae-Kyu Lee Elected to Head the Association for Information Systems
Jae Kyu Lee, HHI (Hyundai Heavy Industries, Co., Ltd.) Chair Professor, College of Business at KAIST, has been elected to lead the world major academic society, Association for Information Systems (AIS), from July 2015 to June 2016. Professor Lee will be the first Korean to serve the organization as president. From July 2014 to June 2015, he will serve as president-elect. Currently, Professor Lee is the Director of EEWS (Energy, Environment, Water, and Sustainability) Research Center at KAIST, focusing on research and development in finding solutions to critical issues facing humanity. He also played a pivotal role in the conclusion of a memorandum of understanding between HHI and KAIST in June 2013 to establish HHI-KAIST EEWS Research Center within the KAIST campus. The AIS is the premier professional association for individuals and organizations who lead the research, teaching, practice, and study of information systems worldwide.
2014.05.14
View 10285
Leon Chua, the founder of the circuit theory called "memristor," gave a talk at KAIST
Dr. Leon Ong Chua is a circuit theorist and professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He visited KAIST on April 16, 2014 and gave a talk entitled “Memristor: New Device with Intelligence.” Dr. Chua contributed to the development of nonlinear circuit theory and cellular neural networks (CNN). He was also the first to conceive of memristor which combines the characteristics of memory and resistor. Memristor is a type of resistor, remembering the direction and charge of electrical current that has previously flowed through the resistor. In other words, memristor can retain memory without power. Today, memristor is regarded as the fourth fundamental circuit element, together with capacitors, inductors, and resistors. In 2008, researchers at Hewlett-Packard (HP) Labs developed the first working model of memristor, which was reported in Nature (May 1st , 2008). In addition, Dr. Chua is an IEEE fellow and has received numerous awards including the IEEE Kirchhoff Award, the IEEE Neural Network Pioneer Award, the IEEE Third Millennium Medal, and the Top 15 Most Cited Author in Engineering Award.
2014.04.21
View 10263
Thermoelectric generator on glass fabric for wearable electronic devices
Wearable computers or devices have been hailed as the next generation of mobile electronic gadgets, from smart watches to smart glasses to smart pacemakers. For electronics to be worn by a user, they must be light, flexible, and equipped with a power source, which could be a portable, long-lasting battery or no battery at all but a generator. How to supply power in a stable and reliable manner is one of the most critical issues to commercialize wearable devices. A team of KAIST researchers headed by Byung Jin Cho, a professor of electrical engineering, proposed a solution to this problem by developing a glass fabric-based thermoelectric (TE) generator that is extremely light and flexible and produces electricity from the heat of the human body. In fact, it is so flexible that the allowable bending radius of the generator is as low as 20 mm. There are no changes in performance even if the generator bends upward and downward for up to 120 cycles. To date, two types of TE generators have been developed based either on organic or inorganic materials. The organic-based TE generators use polymers that are highly flexible and compatible with human skin, ideal for wearable electronics. The polymers, however, have a low power output. Inorganic-based TE generators produce a high electrical energy, but they are heavy, rigid, and bulky. Professor Cho came up with a new concept and design technique to build a flexible TE generator that minimizes thermal energy loss but maximizes power output. His team synthesized liquid-like pastes of n-type (Bi2Te3) and p-type (Sb2Te3) TE materials and printed them onto a glass fabric by applying a screen printing technique. The pastes permeated through the meshes of the fabric and formed films of TE materials in a range of thickness of several hundreds of microns. As a result, hundreds of TE material dots (in combination of n and p types) were printed and well arranged on a specific area of the glass fabric. Professor Cho explained that his TE generator has a self-sustaining structure, eliminating thick external substrates (usually made of ceramic or alumina) that hold inorganic TE materials. These substrates have taken away a great portion of thermal energy, a serious setback which causes low output power. He also commented, "For our case, the glass fabric itself serves as the upper and lower substrates of a TE generator, keeping the inorganic TE materials in between. This is quite a revolutionary approach to design a generator. In so doing, we were able to significantly reduce the weight of our generator (~0.13g/cm2), which is an essential element for wearable electronics." When using KAIST's TE generator (with a size of 10 cm x 10 cm) for a wearable wristband device, it will produce around 40 mW electric power based on the temperature difference of 31 °F between human skin and the surrounding air. Professor Cho further described about the merits of the new generator: "Our technology presents an easy and simple way of fabricating an extremely flexible, light, and high-performance TE generator. We expect that this technology will find further applications in scale-up systems such as automobiles, factories, aircrafts, and vessels where we see abundant thermal energy being wasted." This research result was published online in the March 14th issue of Energy & Environmental Science and was entitled "Wearable Thermoelectric Generator Fabricated on Glass Fabric." Youtube Link: http://www.youtube.com/watch?v=BlN9lvEzCuw&feature=youtu.be [Picture Captions] Caption 1: The picture shows a high-performance wearable thermoelectric generator that is extremely flexible and light. Caption 2: A thermoelectric generator developed as a wristband. The generator can be easily curved along with the shape of human body. Caption 3: KAIST’s thermoelectric generator can be bent as many as 120 times, but it still shows the same high performance.
2014.04.21
View 20634
The First Winner of Sang Soo Lee Award in Optics and Photonics
The Optical Society of Korea and the Optical Society of America selected Mario Garavaglia, a researcher at the La Plata Optical Research Center in Argentina, as the first winner of the Sang Soo Lee Award. Dr. Garavaglia has been selected to receive the award in recognition for his research and education in the field of optics and photonics in Argentina. The Sang Soo Lee Award, co-established by the Optical Society of Korea and the Optical Society of America in 2012, is awarded to an individual who has made a significant impact in the field. Special considerations are made for individuals who have introduced a new field of research, helped establish a new industry, or made a great contribution to education in the field. The award is sponsored by the late Doctor Sang Soo Lee's family, the Optical Society of Korea, and the Optical Society of America. The late Doctor Sang Soo Lee (1925~2010) has been widely known as the 'father of optics' in Korea. He was an active educator, researcher, and writer. Dr. Lee served as the first director of the Korea Advanced Institute of Science (KAIS), the predecessor to KAIST, which was Korea's first research oriented university. Dr. Lee also served as the 6th president of KAIST between 1989 to 1991 and was a KAIST professor of physics for 21 years. He oversaw the completion of 50 Ph.D. and 100 Master's students as well as published 230 research papers. Philip Bucksbaum, the president of the Optical Society of America, commented, "Garavaglia has been an example to the spirit of the Sang Soo Lee Award. The award is the recognition for his tireless efforts and commitment to the development of optics and photonics in Argentina through his teaching, research, and publications." Jeong-Won Woo, the president of the Optical Society of Korea, said, "The Sang Soo Lee Award is given to researchers who have consistently contributed to the development of the field. Garavaglia is a well respected researcher in Argentina, and we are truly happy with his selection." Dr. Garavaglia established a spectroscopy, optic, and laser laboratory in Universidad Nacional de La Plata in 1966. He founded the Center for Optical Research in 1977 and served as the chief of the laboratory until 1991. Dr. Garavaglia published over 250 research papers in the fields of classical optics, modern optics, photoemission spectroscopy, and laser spectroscopy. He has also received the Galileo Galilei Award from the International Commission for Optics in 1999.
2014.03.31
View 10727
Extreme Tech: Nanowire "impossible to replicate" fingerprints could eliminate fraud, counterfeit goods
Research done by Professor Hyun-Joon Song of Chemistry at KAIST on anti-counterfeit, nanoscale fingerprints generated by randomly distributed nanowires was introduced by Extreme Tech, an online global science and technology news. For the articles, please go to: Extreme Tech, March 25, 2014Nanowire ‘impossible to replicate’ fingerprints could eliminate fraud, counterfeit goods http://www.extremetech.com/extreme/179131-nanowire-impossible-to-replicate-fingerprints-could-eliminate-fraud-counterfeit-goods
2014.03.26
View 8658
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 31