본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
research
by recently order
by view order
International Science Journal Spotlights Korean Biotechnology
Biotechnology Journal published by German-based Wiley-VCH, one of the world"s major scientific and technical publishers, devoted its entire special edition for May to biotechnology in Korea. The monthly journal"s special issue was planned by KAIST Professor Sang-Yup Lee of the Chemical and Biomolecular Engineering Department who is one of the journal"s two editors-in-chief. The special issue outlines the current status and future prospect of biotechnology in Korea, and presents five review papers and eight original papers by leading Korean biotech researchers to showcase recent developments in Korean biotechnology. Among these papers, a review by Dr. Byung-Hwan Hyeon and his colleagues describes in detail the Korean biotechnology strategies represented by "Bio-Vision 2016," and another by Dr. Ji-Hyun Kim and his collaborators presents recent progress in microbial genome projects in Korea. In the editorial of the journal, Prof. Lee said, "Heavy industry and IT industry have been the two drivers of Korean economic growth. Korea is now considering biotechnology as its next generation growth engine." Underscoring the growing importance of fusion research, he mentioned that integration of biotechnology with information technology and nanotechnology is advancing rapidly in Korea. Another special edition of Biotechnology Journal focusing on these exciting biotech developments in Korea is planned for the future.
2008.05.20
View 12918
Prof. Sang-Yup Lee Co-Editor-in-Chief of Biotechnology Journal
Prof. Sang-Yup Lee of KAIST"s Department of Chemical and Biomolecular Engineering has been appointed as co-editor-in-chief of Biotechnology Journal published by Wiley-VCH, a German-based leading technical publisher, university authorities said Tuesday, April 15. Launched in January 2006, Biotechnology Journal has covered biological process, brain ailments, biological medicine, protein design and other applied bio-sciences. Starting in May, Lee will be responsible for setting and overseeing editorial direction of the journal along with Prof. Alois Jungbauer of Austria. Professor Lee has been gaining recognition in and outside the country for his research on metabolic engineering. In 2002, he was chosen as one of Asia"s next generation leaders by the World Economic Forum. In 2007, Lee was elected a fellow of the American Association for the Advancement of Science, the world"s largest general scientific society. He is also serving as an editorial member of more than ten international journals including Biotechnology & Bioengineering. Awards and honors include the First Young Scientist"s Award from the President of Korea, the Scientist of the Month Award from the Korean Ministry of Science and Technology, the Best Patent Award from Korean Intellectual Property Office, the Citation Classic Award from ISI, USA, and the First Elmer Gaden Award (1999 Best Paper Award) from Biotechnology and Bioengineering (John Wiley & Sons, USA) at the ACS National meeting.
2008.04.16
View 12862
Prof. Kim Receives Lee Osheroff Prize
Professor Eun-Seong Kim of the Department of Physics has been selected as the winner of the Lee Osheroff Richardson Prize for 2008. The award was established in honor of the 1996 Nobel Prize laureates in Physics David Lee, Douglas Osheroff, and Robert Richardson for their discovery in superfluidity in helium-3. The annual prize sponsored by Oxford Instruments NanoScience is awarded to a young scientist who has made a notable achievement in the field of low temperatures and high magnetic fields. Kim was chosen as the winner of this prestigious award for his contributions to the understanding of solid helium. Through research, Professor Kim found superfluid-like behavior in solid helium and with this discovery it is shown that all three states of matter can exhibit superfluid behavior. The Lee Osheroff Richardson Prize recipient is selected by the North American Prize Committee which is composed of prominent figures in the low temperature and high magnetic fields including Professor Bruce Gaulin of McMaster University, who chairs the Prize Committee. The award ceremony was held on March 11 in New Orleans.
2008.03.18
View 12736
KAIST Holds Symposium on Metabolic Engineering
The KAIST Institute for Bio-Century held a symposium on metabolic engineering at the auditorium of the KAIST"s Applied Engineering Bldg. on Thursday, Feb. 14, in cooperation with the BK21 Chemical Engineering Research Team. The symposium focused on researches on bio-refinery program and bio-energy production in connection with steep hikes in oil prices and worsening environmental problems, including global warming. Seven Korean experts presented their views on metabolic engineering strategies to effectively produce bio-energy and biofuel and the latest research trends. Among the speakers, Prof. Lee Sang-yup, co-head of the KAIST Institute for Bio-Century, spoke on the theme of "Metabolic Engineering for Bio-refinery and Bio-energy. The symposium provided an opportunity to take a glimpse into the latest research trends of metabolic engineering technology. Metabolic engineering technology is crucial to producing chemicals, energy and other substances from renewable biomass materials in a departure from heavy reliance on crude oil.
2008.02.14
View 12686
Maximum Yield Amino Acid-Producing Microorganism Developed with use of System Biotechnology
Maximum Yield Amino Acid-Producing Microorganism Developed with use of System Biotechnology A team led by Sang-Yup Lee, a distinguished professor of Chemical and Biomolecular Engineering and chair professor of LG Chemical, has succeeded in developing maximum yield L-valine-producing microorganism by using System Biotechnology methods. The research results will be published at the April fourth week (April 23 - 27) edition of the Proceedings of the National Academy of Sciences (PNAS) of the USA. Prof. Lee’s team has developed maximum yield amino acid-producing microorganism (target substance of L-valine, an essential amino-acid) by using microorganism E cell system and simulation methods. His team produced initial producing microorganism by selectively operating necessary parts in colon bacillus genome and excavated preliminary target gene which is to newly be operated through transcriptome analysis using DNA chips. Then they performed a great amount of gene deletion experiment on computer by using MBEL979, E-cells of colon bacillus, and excavated secondary engineering targets. And they finally succeeded in developing maximum yield valine-producing microorganism that can extract 37.8 grams of valine from 100 grams of glucose by applying experiment results to the actual development of microorganism so as to achieve the optimization of metabolic flux in cells, Prof. Lee said, “Since successfully used for the development of microorganism on a systematic system level, system biotechnology methods are expected to significantly contribute to the development of all biotechnology-relevant industries. At the beginning, we had huge obstacles in fusing IT and BT, but my team mates cleverly overcame such obstacles, hence I’m very proud of them.” The producing microorganism and its developing methods are pending international applications (PCT).
2007.04.26
View 13625
KAIST Names Three Distinguished Professors
KAIST Names Three Distinguished Professors - Three professors having achieved world’s distinguished research and education performances- Special incentives and non full-time position after retirement age to be offered KAIST (President Nam-Pyo Suh) has named three Distinguished Professors, the most honorable positions in KAIST, for the first time in its history. The three professors are Choong-Ki Kim, Dep. of Computer Science, Sang-Yup Lee, Dep. of Chemical and Biomolecular Engineering, and Kee-Joo Chang, Dep. of Physics. Professor Kim has made significant contributions to the advancement of Korea’s semiconductor field. He developed and put into a practical use ‘CCD Imaging Element’, a core technology in the multimedia era and the most widely used imaging sensor, for the first time in the world. He also promoted special education programs with industrial bodies such as Samsung Electronics, Hynix Semiconductor, etc. to improve industry-academy cooperation programs of KAIST. In recent years, he is showing passionate activities for the development of KAIST, such as genius education, interdisciplinary education by the Graduate School of Culture Technology, and experiment education for undergraduate students. He received Hoam Prize in 1993 and the Order of Civil Merit Moran Medal in 1997, and is an IEEE fellow and the former Vice-president of KAIST. Professor Lee has showed outstanding performances in the field of Metabolic Engineering. He discovered the genome sequences of bacteria for the first time in the world and published a paper regarding his discovery applied to metabolic engineering technologies at Nature Biotechnology in 2004. He also published a 78-page paper, evaluated as the bible of prteomics, at the 70 years long Microbiology and Molecular Biology Review (MMBR). His research performances are 187 domestic and international papers, 203 patent applications, Young Scientist Award, 212 invited lectures from home and abroad, etc. Professor Chang has published about 200 papers in the field of Sold-State Physics and presented diverse theory models regarding semiconductor materials, his major research fields, at review articles, textbooks, academic conferences, etc. Particularly, he found out the essences of DX defects in GaAs semiconductors, a problem that had remained unsolved more than 10 years, and his paper on this has been cited so far more than 500 times. Professor Chang, named as one of the Nation’s Great Scholars in 2005, has 15 papers as cited more than 100 times and records the number of citation indexed by SCI at 4,847, third place among all scientists in Korea. Distinguished Professors are the most honorable positions in KAIST, and only professors achieving world’s distinguished research and education performances can be Distinguished Professors. Being Distinguished Professors demands recommendations from President, Vice-president, Deans of College, and Department Heads and favorable evaluations by domestic and overseas professionals. Distinguished Professors will be offered special incentives and appointed as non full-time faculty even after their full retirement age. KAIST will hire outstanding human resources in highly promising research fields through its novice systems including Distinguished Professors System, etc. to build and retain world’s best faculty.
2007.03.19
View 14432
Professor Sang-Yup Lee Senior Editor of U.S. Biotechnology Journal
Professor Sang-Yup Lee Named Senior Editor of U.S. Biotechnology Journal Will supervise paper examination in the fields of system biology, system bioengineering and metabolic engineering, and set editing direction Professor Sang-Yup Lee, LG Chemical’s Chair-Professor and the leader of BK project group of KAIST Chemical and Biomolecular Engineering Department, was named senior editor of Biotechnology Journal published by the U.S. Wiley-VCH. Professor Lee will supervise paper examination in the fields of system biology, system bioengineering and metabolic engineering, and set and manage the editing direction of the journal. ‘Biotechnology Journal’ was first published in January 2006 to exchange rapidly-exchanging knowledge and information in life science and its relevant fields by Wiley, a world-famous science journal publisher with the history of 208 years (founded in 1799). Particularly, ‘Biotechnology Journal’ is a new-typed scientific journal treating various fields such as life science research-relevant ethics and cultures necessary for general people as well as expertise research information of life science. “Although taking charge of editing of many scientific journals spends much time, it’s very fruitful that I’ll lead the direction of research papers of many world-famous scientific journals and I can make efforts to prevent outstanding papers by Korean scientists from being disadvantaged,” said Professor Lee. “More Korean scholars are taking charge of editing jobs of world-famous scientific journals. It’s a good indication that the capacities of Korean science and engineering have been enhanced significantly as much,” a staff of KAIST PR team said. Meanwhile, Professor Lee, distinguished by outstanding research performances in the fields of metabolic engineering and system life engineering, is now ▲associate editor of Biotechnology and Bioengineering, top scientific journal of biotech engineering published by the U.S. Wiley ▲editor of Applied Microbiology and Biotechnology published by German Springer ▲ associate editor of Bioprocess and Biosystems Engineering by German Springer, and editing member of ▲ Journal of Bioinformatics and Computational Biology by Singapore’s World Scientific ▲ Asia Pacific Biotech News ▲ Biochemical Engineering Journal, Metabolic Engineering, and Microbial Cell Factory by Elsevier.
2007.02.02
View 14071
Professor Sang-Yup Lee publishes a requested paper in Nature Biotechnology
Professor Sang-Yup Lee publishes a requested paper in Nature Biotechnology “The era of commercialized bioplastic is coming” Disclose an opinion as specialist at a requested paper in Nature Biotechnology, October 2006 A team led by Barbel Friedrich, Professor of Humboldt-Universitat zu Berlin, and Alexander Steinbuchel, Professor of West falische Wilhelms-Universitat Munster, found out the entire genome sequence of the typical bioplastic-producing microorganism ‘Ralstonia eutropha’ and published a paper on it in Nature Biotechnology, October 2006. As the entire genome sequence of the typical bioplactic-producing microorganism has been discovered, it is expected that the efficient production of bioplastic will be available through strain improvement at a more systematic level. Regarding this paper, Nature Biotechnology requested world-renowned scholar Sang-Yup Lee, LG Chemical Chair-Professor of KAIST Chemical and Biomolecular Engineering Department, an expert analysis on the future of bioplastic production as a result of the deciphering of the genome sequence, and Professor Lee revealed his opinion at ‘News and Views’ in Nature Biotechnology, October 2006, issued on October 10. In the analysis, he insisted, “The deciphering of the genomes of Ralstonia means to pave the way for the improvement of strains at a system level by combining simulation through various omics and imaginary cells and engineering at a genome level. It will be possible to produce plastic with desired properties by altering the components of plastic as desired and produce bioplastic, more efficient and economical than have been reported so far, through the optimization of metabolic flow.” Professor Lee is a world-renowned scholar in the bioplastic field, who has presented about 70 SCI papers in the field. He created a word ‘Plastic Bacteria’ at Trends in Biotechnology in 1996 and published an expert paper regarding E.Coli Plastic at Nature Biotechnology in 1997. He is now performing a research concerning the improvement of bioplastic-producing strains as an example of a research employing a systematic method for the system biological research and development project of the Ministry of Science and Technology. The followings are the contents of Professor Lee’s paper concerning microorganism plastic published at ‘News and Views’ in Nature Biotechnology, October 2006. - Polyhydroxyalkanoate (PHA) is a high molecule that numerous microorganisms accumulate in their own cells as energy storage substance when they are rich in carbonic resources, but poor in the other growth factors. The PHA high molecule is polyester, in which the unit substances (unit chemicals) are ester-bonded, and has been studied worldwide about twenty years before. However, PHA’s worse properties than petrochemical plastic and extremely high production cost have prevented its commercialization. The production cost of PHA was 15 dollars per kg in 1980’s, twenty times higher than the price of polypropylene. Sang-Yup Lee, LG Chemical Chair-Professor of KAIST Chemical & Biomolecular Department’s BK21 Project Group, has performed a research concerning the efficient production of microorganism plastic through the combination of metabolic engineering and fermentation process under the support of the Ministry of Science and Technology, and developed a process that lowers the production cost of PHA to 2-3 dollars per kg. He also has developed PHA-producing bacteria, efficient enough to fill plastic tightly, and named it ‘Plastic Bacteria’. - The unprecedented rise of oil price for the past two years activated the researches on Bio-based energies and chemical production globally. PHA is also regaining attentions although the researches on it have been withered so far due to its poor economical efficiency and properties. The result of the genome deciphering of the typical plastic-producing microorganism ‘Ralstonia eutropha’ published by a German research team in Nature Biotechnology, October 2006 suggests huge meanings. That is, it will provide a blueprint over the metabolic activities of the bacteria and thus enables more systematic strain improvement. - Eyeing on these facts, Nature Biotechnology requested Professor Sang-Yup Lee an expert analysis, and Professor Lee analyzed that there would be a dramatic development of microorganism plastic production through the application of the system biological engineering method, which is now being performed actively by Professor Lee at KAIST. In the analysis, Professor Lee revealed, “As the genome sequence has been found out, it becomes possible to establish metabolic network at a genome level, and since simulation becomes available, numberless trial and errors and experiments can be replaced with imaginary experiments rapidly. In addition, It makes the more efficient development of strains possible by fusion-analyzing the omics result such as various transcripts, proteins, metabolites, etc.” He also expected that it would be possible to produce tailor-made PHA having desired properties through metabolic engineering as well as the efficient production of plastic. Besides, he prospected that his research on the production of optically pure hydroxyl carboxyl acid, Professor Lee’s international patent right, would gain driving forces and technical development would be made rapidly at biological hydrogen production, production, dissolution and application of aromatic compounds, etc. by featuring this strain. - Recently, Metabolic and ADM, U.S. companies, jointly started to produce PHA at a commercialization level, and Brazil having rich natural resources is commercializing PHA, following Bio-ethanol. In addition, Japan and Germany having a bunch of research performance in this field, and Australia having rich biomass are also performing consistent researches on PHA’s commercialization. Professor Lee prospected, “With the finding out of the genome sequence of the typical bioplastic-producing microorganism, competition for commercialization will be fiercer among nations through the development of efficient production systems.” - Professor Lee prospected that as the efficient production of PHA becomes possible, the production of plastic from various renewable ingredients (cellurose, starch, suger, etc.) through microorganism fermentation would be made practically and the white biotechnologies of existing chemicals would gain more power. He also said, “Korea also will have to try to secure the production technologies and industry of Bio-based chemicals through strategic cooperation with resource powerfuls, etc. on the basis of the technical dominancy in some system metabolic engineering fields.” - ‘News and Views’ in Nature Biotechnology is a section that publishes analyses of world-renowned specialists in the corresponding fields over the contents of some papers having great influences among papers published in the issue. KAIST Professor Sang-Yup Lee has published his second expert analysis of ‘Deciphering bioplastic production’ in the volume of October 2006, following the first paper ‘Going into the era of E.Coli plastic’.
2006.10.23
View 15033
H.Y.Choi won BSPA
H.Y.Choi won BSPA Hyun-Young Choi, Doctor’s course at the Lightwave Systems Research Laboratory (LSRL) of Department of Electrical Engineering of KAIST (Professor in charge Yoonchul Jung), won the Best Student Paper Awards (BSPA) in the Asia-Pacific Optical Communications 2006. BSPA is awarded to the most prospective paper in the field of Optical Transmission, Switching, and Subsystems. Choi suggested an OSNR monitoring technique among performance monitoring techniques for the efficient maintenance and management of optical network in her paper. Her technique is based on a polarization-nulling method using the polarization features of optical signals. It employs polarization mode dispersion compensator and acousto optic tunable filter (AOTF) to prevent monitoring errors arising from polarization mode dispersion (PMD) and non-linear double refraction, which considerably improves the monitoring technique and makes it possible to demonstrate a technique proposed at ultra long haul network.
2006.10.16
View 13310
Sona Kwak wins first prize in international robot design contest
Sona Kwak wins first prize in international robot design contest Sona Kwak (Doctor’s course, Department of Industrial Design) won the first prize in an international robot design contest. Kwak exhibited an emotional robot of ‘Hamie’ at ‘Robot Design Contest for Students’ in Ro-Man 2006/ The 15th IEEE International Symposium on Robot and Human Interactive Communication, which was held at University of Hertfordshire, United Kingdom for three days from September 6 (Wed) and obtained the glory of the first prize. ‘Hamie’, the work of the first prize, has been devised in terms of emotional communication among human beings. The design concept of ‘Hamie’ is a portable emotional robot that can convey even ‘intimacy’ using senses of seeing, hearing, and touching beyond a simple communication function. The design of ‘Hamie’ was estimated to best coincide with the topic of the contest in consideration of its function that allows emotional mutual action between human beings as well as mutual action between human and robot, or robot and robot. ‘Hamie’ is not an actual embodiment but proposed as ‘a concept and design of a robot’. ‘Ro-man’ is a world-famous academic conference in the research field of mutual action between robot and human being, and ‘Robot Design Contest for Students’ is a contest to scout for creative and artistic ideas on the design and structure of future robots and exhibits works from all over world. Kwak is now seeking to develop the contents and designs of various next-generation service robots such as ▲ ottoro ? cleaning robot ▲ robot for blind ▲ robot for the old ▲ robot for education assistance ▲ robot for office affairs ▲ ubiquitos robot in her lab (PES Design Lab) led by Professor Myungseok Kim. “I’ve considered and been disappointed about the role of designers in robot engineering while I’ve been designing robots. I am very proud that my robot design has been recognized in an academic conference of world-famous robot engineers and gained confidence,” Kwak said.
2006.09.27
View 15309
Ju-pyeong Lee won the Best Paper Award from IEEE RTAS
Ju-pyeong Lee, doctoral student of the Dept. of Electrical Engineering of KAIST, received the Best Paper Award from the 11th Institute of Electrical and Electronics Engineers Real-Time and Embedded Technology and Applications Symposium (IEEE RTAS) sponsored by IEEE TC on Real Time System and supported from the U.S. National Science Foundation. He is in the Computer Engineering laboratory, and won the honor by his research of technique of Delayed Locking Technique for Improving Real-Time Performance of Embedded Linux by Prediction of Timer Interrupt. His paper was selected to be the best because of its practicality. His research purposed the technique that can dramatically improve real time problem, which was indicated to be the big problem of Linux. Moreover, he presented the way to easily materialize this technique in the practical system. Best Paper Award is the prize awarded by IEEE Computer Society in the recognition of outstanding achievement in the field of real time system and embedded technology. IEEE RTAS is a symposium held annually by IEEE. In this year, the 11th symposium was held from March 7 to March 10, for four days, in San Francisco, United States. The purpose of this year symposium was to seek papers describing significant contributions both to state of the art and state of the practice in the broad field of embedded and open real-time computing, control, and communication. Therefore, it especially focused on online real-time and embedded applications ranging from industrial embedded applications such as aeronautics and automotive systems to open multimedia, telecommunication and mobile computing systems. Approximately 200 related erudite from almost 20 countries including United States, England, France, Germany, Italy, and Sweden participated in this symposium. Total number of papers submitted to IEEE RTAS was 158, while only 53 of them were selected. by Hye-jung Won / Staff ReporterApril, 2005 / The KAIST Herald
2005.04.12
View 16004
Personal data found on many used hard drives
JoongAng Daily / 2004.03.09 (photo : Professor Song-chun MoonKAIST Graduate School of Management) Many secondhand computer hard drives that are being sold through the Internet formerly belonged to businesses and are therefore full of business records containing personal information, the Korea Advanced Institute of Science and Technology (KAIST), a leading local science and technology school, said yesterday. To determine whether personal information had been properly deleted, the business database research team at KAIST"s business school conducted an experiment in which it randomly bought 41 hard drives through Internet auction sites beginning in April 2003 and analyzed their contents. It said 26 hard drives out of the total, or 65 percent, had not even been reformatted to remove data. On those drives were business records containing the names, birth dates, home and company addresses, telephone numbers and health examination records of 1,349 people. Also, the team found 568 resident identification numbers on the drives. "Secondhand hard disks are an open storehouse of personal information [from business records]," said the team"s head, Moon Young-chul. "We found such personal data for an average of 60 people per used disk." Mr. Moon said that reformatting hard drives alone will not delete all information recorded on them. He said special software designed to completely delete data should be used or such disks should be destroyed. by Ko Ran / 2004.03.09
2004.04.22
View 12800
<<
첫번째페이지
<
이전 페이지
11
12
>
다음 페이지
>>
마지막 페이지 12