본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
vehicle
by recently order
by view order
KAIST Develops Technology for the Precise Diagnosis of Electric Vehicle Batteries Using Small Currents
Accurately diagnosing the state of electric vehicle (EV) batteries is essential for their efficient management and safe use. KAIST researchers have developed a new technology that can diagnose and monitor the state of batteries with high precision using only small amounts of current, which is expected to maximize the batteries’ long-term stability and efficiency. KAIST (represented by President Kwang Hyung Lee) announced on the 17th of October that a research team led by Professors Kyeongha Kwon and Sang-Gug Lee from the School of Electrical Engineering had developed electrochemical impedance spectroscopy (EIS) technology that can be used to improve the stability and performance of high-capacity batteries in electric vehicles. EIS is a powerful tool that measures the impedance* magnitude and changes in a battery, allowing the evaluation of battery efficiency and loss. It is considered an important tool for assessing the state of charge (SOC) and state of health (SOH) of batteries. Additionally, it can be used to identify thermal characteristics, chemical/physical changes, predict battery life, and determine the causes of failures. *Battery Impedance: A measure of the resistance to current flow within the battery that is used to assess battery performance and condition. However, traditional EIS equipment is expensive and complex, making it difficult to install, operate, and maintain. Moreover, due to sensitivity and precision limitations, applying current disturbances of several amperes (A) to a battery can cause significant electrical stress, increasing the risk of battery failure or fire and making it difficult to use in practice. < Figure 1. Flow chart for diagnosis and prevention of unexpected combustion via the use of the electrochemical impedance spectroscopy (EIS) for the batteries for electric vehicles. > To address this, the KAIST research team developed and validated a low-current EIS system for diagnosing the condition and health of high-capacity EV batteries. This EIS system can precisely measure battery impedance with low current disturbances (10mA), minimizing thermal effects and safety issues during the measurement process. In addition, the system minimizes bulky and costly components, making it easy to integrate into vehicles. The system was proven effective in identifying the electrochemical properties of batteries under various operating conditions, including different temperatures and SOC levels. Professor Kyeongha Kwon (the corresponding author) explained, “This system can be easily integrated into the battery management system (BMS) of electric vehicles and has demonstrated high measurement accuracy while significantly reducing the cost and complexity compared to traditional high-current EIS methods. It can contribute to battery diagnosis and performance improvements not only for electric vehicles but also for energy storage systems (ESS).” This research, in which Young-Nam Lee, a doctoral student in the School of Electrical Engineering at KAIST participated as the first author, was published in the prestigious international journal IEEE Transactions on Industrial Electronics (top 2% in the field; IF 7.5) on September 5th. (Paper Title: Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, Link: https://ieeexplore.ieee.org/document/10666864) < Figure 2. Impedance measurement results of large-capacity batteries for electric vehicles. ZEW (commercial EW; MP10, Wonatech) versus ZMEAS (proposed system) > This research was supported by the Basic Research Program of the National Research Foundation of Korea, the Next-Generation Intelligent Semiconductor Technology Development Program of the Korea Evaluation Institute of Industrial Technology, and the AI Semiconductor Graduate Program of the Institute of Information & Communications Technology Planning & Evaluation.
2024.10.17
View 1211
Team KAIST placed among top two at MBZIRC Maritime Grand Challenge
Representing Korean Robotics at Sea: KAIST’s 26-month strife rewarded Team KAIST placed among top two at MBZIRC Maritime Grand Challenge - Team KAIST, composed of students from the labs of Professor Jinwhan Kim of the Department of Mechanical Engineering and Professor Hyunchul Shim of the School of Electrical and Engineering, came through the challenge as the first runner-up winning the prize money totaling up to $650,000 (KRW 860 million). - Successfully led the autonomous collaboration of unmanned aerial and maritime vehicles using cutting-edge robotics and AI technology through to the final round of the competition held in Abu Dhabi from January 10 to February 6, 2024. KAIST (President Kwang-Hyung Lee), reported on the 8th that Team KAIST, led by students from the labs of Professor Jinwhan Kim of the Department of Mechanical Engineering and Professor Hyunchul Shim of the School of Electrical Engineering, with Pablo Aviation as a partner, won a total prize money of $650,000 (KRW 860 million) at the Maritime Grand Challenge by the Mohamed Bin Zayed International Robotics Challenge (MBZIRC), finishing first runner-up. This competition, which is the largest ever robotics competition held over water, is sponsored by the government of the United Arab Emirates and organized by ASPIRE, an organization under the Abu Dhabi Ministry of Science, with a total prize money of $3 million. In the competition, which started at the end of 2021, 52 teams from around the world participated and five teams were selected to go on to the finals in February 2023 after going through the first and second stages of screening. The final round was held from January 10 to February 6, 2024, using actual unmanned ships and drones in a secluded sea area of 10 km2 off the coast of Abu Dhabi, the capital of the United Arab Emirates. A total of 18 KAIST students and Professor Jinwhan Kim and Professor Hyunchul Shim took part in this competition at the location at Abu Dhabi. Team KAIST will receive $500,000 in prize money for taking second place in the final, and the team’s prize money totals up to $650,000 including $150,000 that was as special midterm award for finalists. The final mission scenario is to find the target vessel on the run carrying illegal cargoes among many ships moving within the GPS-disabled marine surface, and inspect the deck for two different types of stolen cargo to recover them using the aerial vehicle to bring the small cargo and the robot manipulator topped on an unmanned ship to retrieve the larger one. The true aim of the mission is to complete it through autonomous collaboration of the unmanned ship and the aerial vehicle without human intervention throughout the entire mission process. In particular, since GPS cannot be used in this competition due to regulations, Professor Jinwhan Kim's research team developed autonomous operation techniques for unmanned ships, including searching and navigating methods using maritime radar, and Professor Hyunchul Shim's research team developed video-based navigation and a technology to combine a small autonomous robot with a drone. The final mission is to retrieve cargo on board a ship fleeing at sea through autonomous collaboration between unmanned ships and unmanned aerial vehicles without human intervention. The overall mission consists the first stage of conducting the inspection to find the target ship among several ships moving at sea and the second stage of conducting the intervention mission to retrieve the cargoes on the deck of the ship. Each team was given a total of three opportunities, and the team that completed the highest-level mission in the shortest time during the three attempts received the highest score. In the first attempt, KAIST was the only team to succeed in the first stage search mission, but the competition began in earnest as the Croatian team also completed the first stage mission in the second attempt. As the competition schedule was delayed due to strong winds and high waves that continued for several days, the organizers decided to hold the finals with the three teams, including the Team KAIST and the team from Croatia’s the University of Zagreb, which completed the first stage of the mission, and Team Fly-Eagle, a team of researcher from China and UAE that partially completed the first stage. The three teams were given the chance to proceed to the finals and try for the third attempt, and in the final competition, the Croatian team won, KAIST took the second place, and the combined team of UAE-China combined team took the third place. The final prize to be given for the winning team is set at $2 million with $500,000 for the runner-up team, and $250,000 for the third-place. Professor Jinwhan Kim of the Department of Mechanical Engineering, who served as the advisor for Team KAIST, said, “I would like to express my gratitude and congratulations to the students who put in a huge academic and physical efforts in preparing for the competition over the past two years. I feel rewarded because, regardless of the results, every bit of efforts put into this up to this point will become the base of their confidence and a valuable asset in their growth into a great researcher.” Sol Han, a doctoral student in mechanical engineering who served as the team leader, said, “I am disappointed of how narrowly we missed out on winning at the end, but I am satisfied with the significance of the output we’ve got and I am grateful to the team members who worked hard together for that.” HD Hyundai, Rainbow Robotics, Avikus, and FIMS also participated as sponsors for Team KAIST's campaign.
2024.02.09
View 6401
KAIST’s unmanned racing car to race in the Indy Autonomous Challenge @ CES 2023 as the only contender representing Asia
- Professor David Hyunchul Shim of the School of Electrical Engineering, is at the Las Vegas Motor Speedway in Las Vegas, Nevada with his students of the Unmanned Systems Research Group (USRG), participating in the Indy Autonomous Challenge (IAC) @ CES as the only Asian team in the race. Photo 1. Nine teams that competed at the first Indy Autonomous Challenge on October 23, 2021. (KAIST team is the right most team in the front row) - The EE USRG team won the slot to race in the IAC @ CES 2023 rightly as the semifinals entree of the IAC @ CES 2022’ held in January of last year - Through the partnership with Hyundai Motor Company, USRG received support to participate in the competition, and is to share the latest developments and trends of the technology with the company researchers - With upgrades from last year, USRG is to race with a high-speed Indy racing car capable of driving up to 300 km/h and the technology developed in the process is to be used in further advancement of the high-speed autonomous vehicle technology of the future. KAIST (President Kwang Hyung Lee) announced on the 5th that it will participate in the “Indy Autonomous Challenge (IAC) @ CES 2023”, an official event of the world's largest electronics and information technology exhibition held every year in Las Vegas, Nevada, of the United States from January 5th to 8th. Photo 2. KAIST Racing Team participating in the Indy Autonomous Challenge @ CES 2023 (Team Leader: Sungwon Na, Team Members: Seongwoo Moon, Hyunwoo Nam, Chanhoe Ryu, Jaeyoung Kang) “IAC @ CES 2023”, which is to be held at the Las Vegas Motor Speedway (LVMS) on January 7, seeks to advance technology developed as the result of last year's competition to share the results of such advanced high-speed autonomous vehicle technology with the public. This competition is the 4th competition following the “Indy Autonomous Challenge (IAC)” held for the first time in Indianapolis, USA on October 23, 2021. At the IAC @ CES 2022 following the first IAC competition, the Unmmaned Systems Research Group (USRG) team led by Professor David Hyunchul Shim advanced to the semifinals out of a total of nine teams and won a spot to participate in CES 2023. As a result, the USRG comes into the challenge as the only Asian team to compete with other teams comprised of students and researchers of American and European backgrounds where the culture of motorsports is more deep-rooted. For CES 2022, Professor David Hyunchul Shim’s research team was able to successfully develop a software that controlled the racing car to comply with the race flags and regulations while going up to 240 km/h all on its on. Photo 3. KAIST Team’s vehicle on Las Vegas Motor Speedway during the IAC @ CES 2022 In the IAC @ CES 2023, the official racing vehicle AV-23, is a converted version of IL-15, the official racing car for Indy 500, fully automated while maintaining the optimal design for high-speed racing, and was upgraded from the last year’s competition taking up the highest speed up to 300 km/h. This year’s competition, will develop on last year’s head-to-head autonomous racing and take the form of the single elimination tournament to have the cars overtake the others without any restrictions on the driving course, which would have the team that constantly drives at the fastest speed will win the competition. Photo 4. KAIST Team’s vehicle overtaking the Italian team, PoliMOVE’s vehicle during one of the race in the IAC @ CES 2022 Professor Shim's team further developed on the CES 2022 certified software to fine tune the external recognition mechanisms and is now focused on precise positioning and driving control technology that factors into maintaining stability even when driving at high speed. Professor Shim's research team won the Autonomous Driving Competition hosted by Hyundai Motor Company in 2021. Starting with this CES 2023 competition, they signed a partnership contract with Hyundai to receive financial support to participate in the CES competition and share the latest developments and trends of autonomous driving technology with Hyundai Motor's research team. During CES 2023, the research team will also participate in other events such as the exhibition by the KAIST racing team at the IAC’s official booth located in the West Hall. Professor David Hyunchul Shim said, “With these competitions being held overseas, there were many difficulties having to keep coming back, but the students took part in it diligently, for which I am deeply grateful. Thanks to their efforts, we were able to continue in this competition, which will be a way to verify the autonomous driving technology that we developed ourselves over the past 13 years, and I highly appreciate that.” “While high-speed autonomous driving technology is a technology that is not yet sought out in Korea, but it can be applied most effectively for long-distance travel in the Korea,” he went on to add. “It has huge advantages in that it does not require constructions for massive infrastructure that costs enormous amount of money such as high-speed rail or urban aviation and with our design, it is minimally affected by weather conditions.” he emphasized. On a different note, the IAC @ CES 2023 is co-hosted by the Consumer Technology Association (CTA) and Energy Systems Network (ESN), the organizers of CES. Last year’s IAC winner, Technische Universität München of Germany, and MIT-PITT-RW, a team of Massachusetts Institute of Technology (Massachusetts), University of Pittsburgh (Pennsylvania), Rochester Institute of Technology (New York), University of Waterloo (Canada), with and the University of Waterloo, along with TII EuroRacing - University of Modena and Reggio Emilia (Italy), Technology Innovation Institute (United Arab Emirates), and five other teams are in the race for the win against KAIST. Photo 5. KAIST Team’s vehicle on the track during the IAC @ CES 2022 The Indy Autonomous Challenge is scheduled to hold its fifth competition at the Monza track in Italy in June 2023 and the sixth competition at CES 2024.
2023.01.05
View 7073
KAIST to showcase a pack of KAIST Start-ups at CES 2023
- KAIST is to run an Exclusive Booth at the Venetian Expo (Hall G) in Eureka Park, at CES 2023, to be held in Las Vegas from Thursday, January 5th through Sunday, the 8th. - Twelve businesses recently put together by KAIST faculty, alumni, and the start-ups given legal usage of KAIST technologies will be showcased. - Out of the participating start-ups, the products by Fluiz and Hills Robotics were selected as the “CES Innovation Award 2023 Honoree”, scoring top in their respective categories. On January 3, KAIST announced that there will be a KAIST booth at Consumer Electronics Show (CES) 2023, the most influential tech event in the world, to be held in Las Vegas from January 3 to 8. At this exclusive corner, KAIST will introduce the technologies of KAIST start-ups over the exhibition period. KAIST first started holding its exclusive booth in CES 2019 with five start-up businesses, following up at CES 2020 with 12 start-ups and at CES 2022 with 10 start-ups. At CES 2023, which would be KAIST’s fourth conference, KAIST will be accompanying 12 businesses including start-ups by the faculty members, alumni, and technology transfer companies that just began their businesses with technologies from their research findings that stands a head above others. To maximize the publicity opportunity, KAIST will support each company’s marketing strategies through cooperation with the Korea International Trade Association (KITA), and provide an opportunity for the school and each startup to create global identity and exhibit the excellence of their technologies at the convention. The following companies will be at the KAIST Booth in Eureka Park: The twelve startups mentioned above aim to achieve global technology commecialization in their respective fields of expertise spanning from eXtended Reality (XR) and gaming, to AI and robotics, vehicle and transport, mobile platform, smart city, autonomous driving, healthcare, internet of thing (IoT), through joint research and development, technology transfer and investment attraction from world’s leading institutions and enterprises. In particular, Fluiz and Hills Robotics won the CES Innovation Award as 2023 Honorees and is expected to attain greater achievements in the future. A staff member from the KAIST Institute of Technology Value Creation said, “The KAIST Showcase for CES 2023 has prepared a new pitching space for each of the companies for their own IR efforts, and we hope that KAIST startups will actively and effectively market their products and technologies while they are at the convention. We hope it will help them utilize their time here to establish their name in presence here which will eventually serve as a good foothold for them and their predecessors to further global commercialization goals.”
2023.01.04
View 9647
Perigee-KAIST Rocket Research Center Launches Scientific Rocket
Undergraduate startup Perigree Aerospace develops suborbital rocket called Blue Whale 0.1 On December 29, Perigee Aerospace, an undergraduate startup, launched a test rocket with a length of 3.2 m, a diameter of 19 cm, and a weight of 51 kg, using ethanol and liquid oxygen as fuel. The launch took place off Jeju Island. It was aimed at building experience and checking the combustion of a liquid propulsion engine and the performance of pre-set flight and trajectory, communication, and navigation devices. It was also one of the projects marking the 50th anniversary of KAIST in 2021. However, after flying for several seconds, the rocket lost its track due to a gust of wind that activated the rocket’s automatic flight suspension system. "At the moment the rocket took off, there was a much stronger gust than expected," Dong-Yoon Shin, CEO of Perigee said. "The wind sent it flying off course and the automatic flight suspension system stopped its engine." However, Shin was not disappointed, saying the launch, which was conducted in collaboration with Perigee-KAIST Rocket Research Center provided a good experience. "Some people say that Blue Whale 0.1 is like a toy because of its small size. Of course, it's much smaller than the rockets I’ve dreamed of, but like other rockets, it has all the technology needed for launch," said Shin, who established his company in 2018 as a KAIST aerospace engineering student to develop small liquid-propellant orbital rockets. Perigee Aerospace aims to develop the world’s lightest launch vehicle using high-powered engines, with a goal of leading the global market for small launch vehicles in the new space generation. Perigee-KAIST Rocket Research Center was founded in 2019 for the research and development of rocket propellants and has been testing the combustion of rocket engines of various sizes in their liquid propellant rocket combustion lab located on the KAIST Munji Campus. The research center initiated the 50th anniversary rocket launch project in late April of last year, finished the examination of their preliminary design in late May, and secured a tentative launching site through the KAIST-Jejudo agreement in early July. The ethanol engine combustion was tested in late July, and an examination meeting regarding the detailed design that took place in late August was followed by two months of static firing tests of the assembled rocket in October and November. This was a very meaningful trial in which a domestic private enterprise founded by a college student collaborated with a university to successfully develop and launch a technically challenging liquid propellant rocket. Shin's near-term goal is to launch a two-stage orbital rocket that uses liquid methane as fuel and weighs 1.8 tons. To secure competitiveness in the small projectile market, KAIST and Perigee Aerospace have set up a joint research center to test various rocket engine sizes and develop the world's lightest projectile using a high-performance engine. Professor Jae-Hung Han, head of the Department of Aerospace Engineering, said, “The scientific rocket system secured through the launch of the celebratory rocket will be utilized for design and system-oriented education, and for carrying out various scientific missions.” He added, “It is very rare both domestically and globally that a scientific rocket designed by the initiatives of a department should be incorporated as part of a regular aerospace system design curriculum. This will be an exemplary case we can boast about to the rest of the world.” Perigee Aerospace will improve the technology they have developed through the course of this project to develop subminiature vehicles they may use to launch small satellites into the low Earth orbit. Shin said, “I am happy just with the fact that we have participated in a rocket project to celebrate the 50th anniversary of KAIST, and I would like to thank the engineers at my company and members of the KAIST Department of Aerospace Engineering.” He added, “I’m looking forward to the day that we develop a space launch vehicle that can deliver satellites even higher.”
2022.01.14
View 6622
Professor Kang’s Team Receives the IEEE Jack Newbauer Memorial Award
Professor Joonhyuk Kang of the School of Electrical Engineering received the IEEE Vehicular Technology Society’s 2021 Jack Neubauer Memorial Award for his team’s paper published in IEEE Transactions on Vehicular Technology. The Jack Neubauer Memorial Award recognizes the best paper published in the IEEE Transactions on Vehicular Technology journal in the last five years. The team of authors, Professor Kang, Professor Sung-Ah Chung at Kyungpook National University, and Professor Osvaldo Simeone of King's College London reported their research titled Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning in IEEE Transactions on Vehicular Technology, Vol. 67, No. 3, pp. 2049-2063, in March 2018. Their paper shows how the trajectory of aircraft is optimized and resources are allocated when unmanned aerial vehicles perform edge computing to help mobile device calculations. This paper has currently recorded nearly 400 citations (based on Google Scholar). "We are very happy to see the results of proposing edge computing using unmanned aerial vehicles by applying optimization theory, and conducting research on trajectory and resource utilization of unmanned aerial vehicles that minimize power consumption," said Professor Kang.
2021.07.12
View 6129
Team USRG’s Winning Streak Continues at the AI Grand Challenge
Team USRG (Unmanned Systems Research Group) led by Professor Hyunchul Shim from the School of Electrical Engineering has won the AI Grand Challenge 2020 held on Nov. 23 at Kintex in Ilsan, Kyonggi-do for the second consecutive year. The team received 7.7 million KRW in research funding from the Ministry of Science and ICT, the organizer of the challenge. The team took a little over two minutes to complete the rescue operation mission of the challenge. The mission included swerving around seven obstacles, airdropping an aid package, and safely landing after identifying the landing spot. Their drone is the only one that successfully passed through a 10-meter tunnel out of five pre-qualified teams: three from universities and two from companies. The AI Grand Challenge, which began in 2017, was designed to promote AI technology and its applications for addressing high-risk technical challenges, especially for conducting complex disaster relief operations. For autonomous flying drones, swerving to avoid objects has always been an essential skill and a big challenge. For their flawless performance in the rescue operation, the team loaded an AI algorithm and upgraded their drone by improving the LiDAR-based localization system and a stronger propulsion system to carry more sensors. The drone weighs 2.4 kg and carries a small yet powerful computer with a GPU. This AI-powered drone can complete rescue missions more efficiently in complicated and disastrous environments by precisely comprehending where the drone should go without needing GPS. The team also designed an all-in-one prop guard and installed a gripper onto the bottom of the drone to hold the aid package securely. “We tried hard to improve our localization system better to resolve issues we had in the previous event,” said Professor Shim. Two PhD candidates, Han-Sob Lee and Bo-Sung Kim played a critical role in developing this drone. After their two-year winning streak, their prize money now totals 2.4 billion KRW, equivalent to the winning prize of the DARPA Challenge. As the winning team, they will collaborate with other champions at the AI track challenge to develop rescue mission technology for a more complex environment. “The importance of AI technology is continuing to grow and the government is providing large amounts of funding for research in this field. We would like to develop very competitive technology that will work in the real world,” Professor Shim added. His group is investigating a wide array of AI technologies applicable to unmanned vehicles including indoor flying drones, self-driving cars, delivery robots, and a tram that circles the campus.
2020.12.01
View 7377
AI to Determine When to Intervene with Your Driving
(Professor Uichin Lee (left) and PhD candidate Auk Kim) Can your AI agent judge when to talk to you while you are driving? According to a KAIST research team, their in-vehicle conservation service technology will judge when it is appropriate to contact you to ensure your safety. Professor Uichin Lee from the Department of Industrial and Systems Engineering at KAIST and his research team have developed AI technology that automatically detects safe moments for AI agents to provide conversation services to drivers. Their research focuses on solving the potential problems of distraction created by in-vehicle conversation services. If an AI agent talks to a driver at an inopportune moment, such as while making a turn, a car accident will be more likely to occur. In-vehicle conversation services need to be convenient as well as safe. However, the cognitive burden of multitasking negatively influences the quality of the service. Users tend to be more distracted during certain traffic conditions. To address this long-standing challenge of the in-vehicle conversation services, the team introduced a composite cognitive model that considers both safe driving and auditory-verbal service performance and used a machine-learning model for all collected data. The combination of these individual measures is able to determine the appropriate moments for conversation and most appropriate types of conversational services. For instance, in the case of delivering simple-context information, such as a weather forecast, driver safety alone would be the most appropriate consideration. Meanwhile, when delivering information that requires a driver response, such as a “Yes” or “No,” the combination of driver safety and auditory-verbal performance should be considered. The research team developed a prototype of an in-vehicle conversation service based on a navigation app that can be used in real driving environments. The app was also connected to the vehicle to collect in-vehicle OBD-II/CAN data, such as the steering wheel angle and brake pedal position, and mobility and environmental data such as the distance between successive cars and traffic flow. Using pseudo-conversation services, the research team collected a real-world driving dataset consisting of 1,388 interactions and sensor data from 29 drivers who interacted with AI conversational agents. Machine learning analysis based on the dataset demonstrated that the opportune moments for driver interruption could be correctly inferred with 87% accuracy. The safety enhancement technology developed by the team is expected to minimize driver distractions caused by in-vehicle conversation services. This technology can be directly applied to current in-vehicle systems that provide conversation services. It can also be extended and applied to the real-time detection of driver distraction problems caused by the use of a smartphone while driving. Professor Lee said, “In the near future, cars will proactively deliver various in-vehicle conversation services. This technology will certainly help vehicles interact with their drivers safely as it can fairly accurately determine when to provide conversation services using only basic sensor data generated by cars.” The researchers presented their findings at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp’19) in London, UK. This research was supported in part by Hyundai NGV and by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. (Figure: Visual description of safe enhancement technology for in-vehicle conversation services)
2019.11.13
View 14721
KAIST-KU Joint Research Center for Smart Healthcare & Transportation
(President Shin shakes hands with KU acting Presidedent Arif Al Hammdi at the KAIST-KU Joint Research Center opening ceremony on April 8.) KAIST opened the KAIST-Khalifa University Joint Research Center with Khalifa University on April 8. The opening ceremony was held at Khalifa University and was attended by President Sung-Chul Shin and Khalifa University Acting President Arif Al Hammadi. The new research center reflects the evolution of the long-established partnership between the two institutions. The two universities have already made very close collaborations in research and education in the fields of nuclear and quantum engineering. The launch of this center expanded their fields of collaboration to smart healthcare and smart transportation, key emerging sectors in the Fourth Industrial Revolution. President Shin signed an MOU with the UAE Minister of State for Advanced Science Sarah Amiri and Khalifa University to expand mutual collaboration in technology development and fostering human capital last year. The center will conduct research and education on autonomous vehicles, infrastructure for autonomous vehicle operation, wireless charging for electric vehicles, and infrastructure for electric autonomous vehicles. As for smart healthcare, the center will focus on healthcare robotics as well as sensors and wearable devices for personal healthcare services. President Shin, who accompanied a research team from the Graduate School of Green Transportation, said, “We are very delighted to enter into this expanded collaboration with KU. This partnership justifies our long-standing collaboration in the areas of emerging technologies in the Fourth Industrial Revolution while fostering human capital.” KU Acting President Arif Al Hammadi added, “The outcome of these research projects will establish the status of both institutions as champions of the Fourth Industrial Revolution, bringing benefits to our communities. We believe the new research center will further consolidate our status as a globally active, research-intensive academic institution, developing international collaborations that benefit the community in general.”
2019.04.09
View 6760
Team KAT Wins the Autonomous Car Challenge
(Team KAT receiving the Presidential Award) A KAIST team won the 2018 International Autonomous Car Challenge for University Students held in Daegu on November 2. Professor Seung-Hyun Kong from the ChoChunShik Graduate School of Green Transportation and his team participated in this contest with the team named KAT (KAIST Autonomous Technologies). The team received the Presidential Award with a fifty million won cash prize and an opportunity for a field trip abroad. The competition was conducted on actual roads with Connected Autonomous Vehicles (CAV), which incorporate autonomous driving technologies and vehicle-to-everything (V2X) communication system. In this contest, the autonomous vehicles were given a mission to pick up passengers or parcels. Through the V2X communication, the contest gave current location of the passengers or parcels, their destination, and service profitability according to distance and level of service difficulty. The participating vehicles had to be equipped very accurate and robust navigation system since they had to drive on narrow roads as well as go through tunnels where GPS was not available. Moreover, they had to use camera-based recognition technology that was invulnerable to backlight as the contest was in the late afternoon. The contest scored the mission in the following way: the vehicles get points if they pick up passengers and safely drop them off at their destination; on the other hand, points are deducted when they violate lanes or traffic lights. It will be a major black mark if a participant sitting in the driver’s seat needs to get involved in driving due to a technical issue. Youngbo Shim of KAT said, “We believe that we got major points for technical superiority in autonomous driving and our algorithm for passenger selection.” This contest, hosted by Ministry of Trade, Industry and Energy, was the first international competition for autonomous driving on actual roads. A total of nine teams participated in the final contest, four domestic teams and five teams allied with overseas universities such as Tsinghua University, Waseda University, and Nanyang Technological University. Professor Kong said, “There is still a long way to go for fully autonomous vehicles that drive flexibly under congested traffic conditions. However, we will continue to our research in order to achieve high-quality autonomous driving technology.” (Team KAT getting ready for the challenge)
2018.11.06
View 9410
Hubo Completes New Mission at the Winter Olympic Torch Relay
KAIST-born humanoid robot, Hubo, completed its special new mission: carrying the Olympic torch. The Winter Olympics will be held in PyeongChang for two weeks beginning February 9. On December 11, the final leg of the torch relay in Daejeon for the PyeongChang Olympics 2018 took place inside KAIST. A city known for science and technology hosted special torch relay runners over three days. Hubo arrived at the campus with Dr. Dennis Hong, a professor from the University of California at Los Angeles, in an autonomous vehicle. Then, Hubo received the flame from Professor Hong. Hubo, a robot developed by Professor Jun Ho Oh from the Department of Mechanical Engineering at KAIST, is best known for being the winner of the DARPA Robotics Challenge in 2015. Hubo successfully completed its Olympic mission. That is, it had to drill through a wall to deliver the torch to the next runner. After completing the mission successfully, the torch was passed to Professor Oh. He ran a few steps and handed it over to the last runner of the Daejeon leg. The last runner was Jung Jae Lee, who is a winning team member of the Samsung Junior Software Cup. Lee also had the honor of riding and controlling FX-2 which is another robot developed by Professor Oh for this peace torch relay. FX-2 took a few steps to finalize the relay. Lee said, “I would like to become an expert in security. As I was riding the robot, I felt every step I took was one step closer to achieving of making major developments in the field of security. Professor Oh said, “It is meaningful to see humans and robots cooperating with each other to carry out the torch relay.” The torch relay, participated in by both humans and robots in Daejeon, was successfully completed and the torch headed off to Boryeong, Chungcheongnam-do.
2017.12.12
View 9198
KAIST's Top 10 Contributions to Korea and the World
Established in 1971, the Korea Advanced Institute of Science and Technology (KAIST) started off as a relatively modest graduate school in a few disciplines in science and technology, but has gradually expanded into a full-fledged research university over the years. From the beginning, KAIST was intended to offer an elite science education, setting it apart from other universities in Korea. A majority of its graduates have contributed to the development of, what the world now praises, Korean industry and economy, and have led the Korean scientific community for several decades. The university has also advanced the frontiers of knowledge, conducting the lion’s share of the nation’s private research and development in basic and applied science, leading to innovations and technologies essential to the growth of today’s Korea. As it establishes international benchmarks of success, KAIST has acquired a global reputation for delivering the highest level of science and engineering education, while performing cutting-edge research and serving as a crucial driver to generate new knowledge and innovation beneficial not only to Korea but also to the world. The university has consistently ranked in the top 100 research universities for over more than a decade, according to the world university rankings published by international ranking institutions for higher education, among others, Quacquarelli Symonds and the Times Higher Education. KAIST will mark its 45th anniversary next year. It plans to celebrate the anniversary, and here are some of the reasons why: KAIST’s Win at the DARPA Robotics Challenge (DRC) 2015 Team KAIST, consisted of 29 members (students and researchers) led by Professors Jun-Ho Oh of the Mechanical Engineering Department and In-So Kweon of the Electrical Engineering Department, won the international humanoid robotics competition hosted by the United States (US) Defense Advanced Research Projects Agency (DARPA). Upon completion of the first and second competitions, the finals were held on June 5-6, 2015, at the Fairplex in Pomona, California. DARPA hosted the event to spur the development of humanoid robots to assist rescue and relief efforts in dangerous environments such as the Fukushima Daiichi nuclear incident in 2011. With 24 international teams participating in the finals from the US, Japan, Germany, China, Italy, and Korea, Team KAIST’s humanoid robot, DRC-HUBO, completed all eight tasks in 44 minutes and 28 seconds, six minutes earlier than the runner-up, and almost eleven minutes earlier than the third-place team, walking away with the grand prize of USD 2 million. Hitting a Grand Slam to Win Major International Design Awards Professor Sang-Min Bae of the Industrial Design Department achieved a grand slam in international design awards with his work HEARTea, an interactive tumbler, winning four major design competitions in the world: the iF Design Award, the International Design Excellence Awards, the Red Dot Design Award, and the Good Design Award. Released in 2010, HEARTea swept prizes from the four awards which were held during the period of the year 2010-2011. The tumbler displays the temperature of liquid contained inside in three degrees (cool, warm, and hot) by showing different colored lights on the surface of the tumbler based on the liquid temperature (see picture below). In 2015, Professor Bae and his research team won three awards from the 2015 Red Dot Design Award: the Best of the Best Award and two Red Dot Design Concept Awards. The team received the Best of the Best Award, the most prestigious award among the Red Dot Design awards, for Boxchool, a modular classroom built on shipping containers, which offers underprivileged children better opportunities for learning. With greater mobility, Boxchool can be easily installed in any setting, including remote areas where children do not have access to regular school facilities. Glass Fabric Thermoelectric Generator, the Grand Prize Winner at the Netexplo Forum 2015 Professor Byung-Jin Cho of the Electrical Engineering Department received the grand prize at the Netexplo Forum 2015 held in partnership with the United Nations Educational, Scientific, and Cultural Organization (UNESCO) on February 4-5, 2015, at the UNESCO House in Paris. Established in 2007, the Netexplo Forum is an annual international conference hosted by the Netexplo Observatory, a non-profit organization sponsored by the French Senate and the French Ministry for the Digital Economy, which studies the impact of digital technology on society and business. Each year, the Netexplo Forum highlights major trends in digital technology and innovation worldwide and lists the top ten most promising technologies that it considers will greatly impact the world. Among the list for this year, Professor Cho’s glass fabric-based thermoelectric (TE) generator received the grand prize. Using a screen-printing technique, Professor Cho printed TE liquid materials onto a glass fabric to generate electricity through the thermoelectric effect, that is, by generating electricity from temperature difference. Since the glass fabric is light and flexible, this technology is expected to have a wide range of applications in wearable computers and devices. Charging on the Go: Online Electric Vehicle System KAIST’s Online Electric Vehicle (OLEV) is a system that charges electric vehicles while stationary or driving, thus removing the need to stop for charges. Developed by Professor Dong-Ho Cho of the Electrical Engineering Department and his research team, OLEV receives power wirelessly through a new application called “Shaped Magnetic Field in Resonance technology (SMFIR).” Electrical cables buried underneath roads create magnetic fields, and a receiving device installed underneath the electric vehicle collects the fields and converts them into electricity. Time, a US weekly magazine, listed OLEV as one of the 50 Greatest Inventions of the Year 2010 in its November 22nd issue. Since 2012, several OLEV buses have been operating daily to provide citizens with transportation in cities such as Yeosu, Gumi, and Sejong in Korea. In April 2015, Professor Cho signed a memorandum of understanding with the city government of Medellín, the second largest city in Colombia, to provide two OLEV buses for inner-city transportation services. The research team also developed OLEV for a high capacity transit system including trams and high-speed trains, successfully showcasing 60 kHz of power transferred wirelessly to trams and trains in 2013 and 2014, respectively. Pioneer in the Development of Functional Mesoporous Materials and Zeolites On September 25, 2014, Thomson Reuters announced the “2014 Citation Laureates,” a list of candidates considered likely to win the Nobel Prize in the fields of physics, chemistry, physiology or medicine, and economics. Distinguished Professor Ryong Ryoo of the Department of Chemistry was named the 2014 Thomson Reuters Citation Laureates in Chemistry in recognition of his significant contribution to the advancement of designing functional mesoporous materials. He is the first Korean scientist to make the list. Professor Ryoo has pioneered the field of functional mesoporous materials and zeolites which are widely used as catalysts and sorbents. In 1999, he developed a nanocasting method, and with the technique, was able to synthesize ordered mesoporous carbon materials, for the first time in the world. Today, ordered mesoporous carbon materials have widespread applications in many areas such as adsorbents, catalysts and supports, gas-storage hosts, and electrode materials. Since 2006, using zeolite frameworks, Professor Ryoo has led the development of new methods to synthesize mesoporous materials whose molecules are designed to have a hierarchical structure of microspores and mesopores. He has published 255 research papers in renowned academic journals including Nature and Science. In December 2011, Science highlighted his research as one of the top ten breakthroughs in the year of 2011 in an article entitled “Directing Zeolite Structures into Hierarchically Nanoporous Architectures.” Professor Ryoo received numerous awards and honors including the World’s Top 100 Chemists over the Past 11 Years (2000-2010) by UNESCO and IUPAC (International Union of Pure and Applied Chemistry), the Breck Award by International Zeolite Association, and the Ho-Am prize in Science. The Launch of Korea’s First Satellites into Space Founded in 1989, the Satellite Technology Research Center (SaTReC) at KAIST has led the development of a series of Korean-made satellites over the past 26 years. The first satellite, the Korea Institute of Technology Satellite-1 (KITSAT-1), was launched on August 11, 1992, at the Guiana Space Center in Kourou, French Guiana. KITSAT-1 was designed in collaboration with a British university, the University of Surrey in Guildford. The success of KITSAT-1 sparked nation-wide interest in the development of space technology and led to the subsequent launches of 18 satellites and three carrier rockets such as KITSAT-2 and 3 (meteorological satellites); KSR-1, 2, and 3 (carrier rockets); KOREASAT-1, 2, 3, 5, and 6 (communication satellites); KOMPSAT-1, 2, 3, and 5 (multipurpose satellites); STSAT-1, 2C, and 3 (scientific satellites); and COMS-1 (navigation satellite). The latest scientific satellite, STSAT-3, and an earth observation satellite, KOMPSAT-3A, were launched in 2013 and 2015, respectively. The STSAT-2C, exclusively developed by SaTReC, was launched in January 2013 and transmitted data on the observation of space environments to the ground station located on KAIST’s campus for 14 months. The STSAT-2C was the first satellite developed solely with Korean technology. On June 30, 2009, the Korean government also established a spaceport in South Jeolla’s Goheung County, the Naro Space Center to launch satellites and spacecraft. KAIST: Major Feeder for Startups in Korea As seen in its core values of promoting creativity and a challenging spirit, KAIST has always encouraged startups and technology transfers led by university members including students and faculty. In the past four years from 2011 to 2014, students and faculty members have created 104 startups based on technology innovation and research outcomes, with an average of 26 new companies started per year. This is the highest number of university-led startups in Korea. As of 2013, KAIST graduates founded a total of 1,245 companies, generating approximately USD 1.5 billion sales and creating 34,000 jobs. KAIST has provided a variety of programs and facilities to build a startup-friendly campus culture and support student- and faculty-led entrepreneurship, for example, the End-Run Policy, Startup KAIST Studio, the Institute of Startup and Entrepreneurship, and the Startup Incubation Center. In particular, KAIST Idea Factory, a startup laboratory established last year, where students play around with ideas by conducting new experiments or building test products, created 3-D printers this year, producing 20 prototypes and filing four pending patents. Recently, KAIST has registered four proprietary standard patents with MPEG (Moving Picture Experts Group)-LA’s HEVC (High Efficiency Video Coding) Patent Portfolio License, which provides access to essential patent rights for the HEVC digital video coding standard. KAIST expects to acquire more than 50 proprietary standard patents within two years, generating close to UDS 1 million in income. The Number of KAIST Doctoral Graduates Reaches Over 10,000 Since the establishment of KAIST forty-four years ago, more than ten thousand alumni have received their doctorates. The university’s 2015 Commencement ceremony took place on February 13, 2015, at the Sports Complex on campus, awarding Dr. Sun-Mi Cho of the Department of Biological Sciences the 10,000th doctoral degree. She also received her Bachelor’s and Master’s degrees from KAIST. In 1978, KAIST had only two doctoral graduates, but since 1987, there have been more than one hundred graduates each year, two hundred since 1994, and four hundred since 2000. In 2015 alone, 522 doctoral students graduated. One of the first doctoral graduates, Dr. Dong-Yol Yang (Class of 1978 in the Mechanical Engineering Department) became a professor in the same department of KAIST. In the early 1970s, many Koreans preferred to go abroad for Ph.D. degrees, but this changed when KAIST began to select candidates for master’s degrees in 1973, and doctoral degrees in 1975. Talented Korean students began to work in KAIST laboratories, and its graduates were known for their knowledge and skills. Now, KAIST receives many applications from talented foreign students as well. At the 2015 Commencement, KAIST conferred 522 Doctoral, 1,241 Master’s, and 915 Bachelor of Science degrees. Since its inception in 1971, KAIST has granted 10,403 doctoral degrees, 26,402 master’s degrees, and 51,412 bachelor’s degrees. Fostering a New Learning Model: The Education 3.0 Program KAIST undertook a bold initiative to improve its education system that would address more effectively the needs of today’s higher education to foster talents with creative and critical thinking skills. It introduced a new pedagogical model, the Education 3.0 program, to the campus in the spring of 2012, which was then an extremely rare movement taken by universities around the world. The Education 3.0 program incorporates flipped learning and smart classrooms. This means there are no formal lectures while in-class time is devoted to problem solving, exercises, projects, or discussions. The program provided students with greater opportunity to control their learning and interact more with professors and peers. Originally started with three general courses in physics, chemistry, and biology, the Education 3.0 is now offered in 50-60 courses per semester. In 2013 alone, approximately 2,000 KAIST students took the Education 3.0 courses. The university has also developed and implemented an e-Learning system to provide online courses, as well as participated in the Massive Open Online Course (MOOC). Partnering with Coursera since 2013, KAIST has offered three MOOCs in engineering and business management to the global community. Leading the efforts to create Korean MOOCs (K-MOOCs), KAIST agreed with other Korean universities in October 2015 to create online courses in basic subjects of physics, chemistry, mathematics, life science, mechanical engineering, and material science. K-MOOCs will be available in the summer of 2016. Holistic Admissions for Undergraduates Korean universities traditionally put an emphasis on students’ empirical data such as a GPA or the national College Scholastic Ability Test (CSAT) when reviewing applicants for the undergraduate admission. This practice, however, has posed serious challenges, most notably with CSAT’s requirement that the test takes place only once a year. It was simply impossible and unfair to assess students’ capability from the scores of a high-pressure, high-stakes standardized test. In 2009, KAIST changed its undergraduate admission process to consider the whole applicant’s profile, not just looking for students with good grades, but interesting and promising students who would contribute to the campus community in different and diverse ways. KAIST’s admissions officers have taken into account applicants’ interests, passions, special talents, and personality through their personal essays, recommendation letters, extracurricular activities, and intensive interviews. Prior to KAIST’s new policy, no other university in the nation had ever incorporated such a holistic approach to review student applications. Today, most Korean universities have adopted this admission policy. In addition, for the first time in Korea, KAIST offered all freshmen the option to defer the decision on majors, thereby allowing them to explore their interests more freely. Even after declaring majors as sophomores and higher classes, KAIST students can easily change their majors, and undergraduate students can actually create and lead their own research projects. As such, KAIST has continued to offer innovations to provide students with a quality education to foster their potential.
2015.11.27
View 16139
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4