본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Humanoid
by recently order
by view order
KAIST Research Team Develops World’s First Humanoid Pilot, PIBOT
In the Spring of last year, the legendary, fictional pilot “Maverick” flew his plane in the film “Top Gun: Maverick” that drew crowds to theatres around the world. This year, the appearance of a humanoid pilot, PIBOT, has stolen the spotlight at KAIST. < Photo 1. Humanoid pilot robot, PIBOT > A KAIST research team has developed a humanoid robot that can understand manuals written in natural language and fly a plane on its own. The team also announced their plans to commercialize the humanoid pilot. < Photo 2. PIBOT on flight simulator (view from above) > The project was led by KAIST Professor David Hyunchul Shim, and was conducted as a joint research project with Professors Jaegul Choo, Kuk-Jin Yoon, and Min Jun Kim. The study was supported by Future Challenge Funding under the project title, “Development of Human-like Pilot Robot based on Natural Language Processing”. The team utilized AI and robotics technologies, and demonstrated that the humanoid could sit itself in a real cockpit and operate the various pieces of equipment without modifying any part of the aircraft. This is a fundamental difference that distinguishes this technology from existing autopilot functions or unmanned aircrafts. < Photo 3. PIBOT operating a flight simulator (side) > The KAIST team’s humanoid pilot is still under development but it can already remember Jeppeson charts from all around the world, which is impossible for human pilots to do, and fly without error. In particular, it can make use of recent ChatGPT technology to remember the full Quick Reference Handbook (QRF) and respond immediately to various situations, as well as calculate safe routes in real time based on the flight status of the aircraft, with emergency response times quicker than human pilots. Furthermore, while existing robots usually carry out repeated motions in a fixed position, PIBOT can analyze the state of the cockpit as well as the situation outside the aircraft using an embedded camera. PIBOT can accurately control the various switches in the cockpit and, using high-precision control technology, it can accurately control its robotic arms and hands even during harsh turbulence. < Photo 4. PIBOT on-board KLA-100, Korea’s first light aircraft > The humanoid pilot is currently capable of carrying out all operations from starting the aircraft to taxiing, takeoff and landing, cruising, and cycling using a flight control simulator. The research team plans to use the humanoid pilot to fly a real-life light aircraft to verify its abilities. Prof. Shim explained, “Humanoid pilot robots do not require the modification of existing aircrafts and can be applied immediately to automated flights. They are therefore highly applicable and practical. We expect them to be applied into various other vehicles like cars and military trucks since they can control a wide range of equipment. They will particularly be particularly helpful in situations where military resources are severely depleted.” This research was supported by Future Challenge Funding (total: 5.7 bn KRW) from the Agency for Defense Development. The project started in 2022 as a joint research project by Prof. David Hyunchul Shim (chief of research) from the KAIST School of Electrical Engineering (EE), Prof. Jaegul Choo from the Kim Jaechul Graduate School of AI at KAIST, Prof. Kuk-Jin Yoon from the KAIST Department of Mechanical Engineering, and Prof. Min Jun Kim from the KAIST School of EE. The project is to be completed by 2026 and the involved researchers are also considering commercialization strategies for both military and civil use.
2023.08.03
View 9932
Hubo Professor Jun-Ho Oh Donates Startup Shares Worth 5 Billion KRW
Rainbow Robotics stock used to endow the development fund Emeritus Professor Jun-Ho Oh, who developed the 2015 DARPA Challenge winning humanoid robot DRC-Hubo, donated 5 billion KRW on October 25 during a ceremony held at the KAIST campus in Daejeon. Professor Oh donated his 20% share (400 shares) of his startup Rainbow Robotics, which was established in 2011. Rainbow Robotics was listed on the KOSDAQ this February. The 400 shares were converted to 200,000 shares with a value of approximately 5 billion KRW when listed this year. KAIST sold the stocks and endowed the Jun-Ho Oh Fund, which will be used for the development of the university. He was the 39th faculty member who launched a startup with technology from his lab and became the biggest faculty entrepreneur donor. “I have received huge support and funding for my research. Fortunately, the research had a good result and led to the startup. Now I am very delighted to pay back the university. I feel that I have played a part in building the school’s startup ecosystem and creating a virtuous circle,” said Professor Oh during the ceremony. KAIST President Kwang Hyung Lee declared, “Professor Oh has been a very impressive exemplary model for our aspiring faculty and student tech startups. We will spare no effort to support startups at KAIST.” Professor Oh, who retired from the Department of Mechanical Engineering last year, now serves as the CTO at Rainbow Robotics. The company is developing humanoid bipedal robots and collaborative robots, and advancing robot technology including parts for astronomical observations. Professor Hae-Won Park and Professor Je Min Hwangbo, who are now responsible for the Hubo Lab, also joined the ceremony along with employees of Rainbow Robotics.
2021.10.26
View 6844
Hubo Debuts as a News Anchor
HUBO, a humanoid robot developed by Professor Jun-Ho Oh’s team, made its debut as a co-anchor during the TJB prime time news 8 on May 14. “Un-contact" became the new normal after Covid-19 and many business solutions are being transformed using robotics. HUBO made two news reports on contactless services using robots in medical, manufacturing, and logistics industries. HUBO 2, the second generation of HUBO, appeared as a special anchor on the local broadcasting network’s special program in celebration of its 25th anniversary. HUBO is the champion of the 2015 DARPA Robotics Challenge held in the USA. Its FX-2 riding robot also participated in the Olympic torch relay during the 2018 PyeongChang Winter Olympics. Click here to watch a full video of HUBO anchoring the news. (END)
2020.05.14
View 9853
Hubo Completes New Mission at the Winter Olympic Torch Relay
KAIST-born humanoid robot, Hubo, completed its special new mission: carrying the Olympic torch. The Winter Olympics will be held in PyeongChang for two weeks beginning February 9. On December 11, the final leg of the torch relay in Daejeon for the PyeongChang Olympics 2018 took place inside KAIST. A city known for science and technology hosted special torch relay runners over three days. Hubo arrived at the campus with Dr. Dennis Hong, a professor from the University of California at Los Angeles, in an autonomous vehicle. Then, Hubo received the flame from Professor Hong. Hubo, a robot developed by Professor Jun Ho Oh from the Department of Mechanical Engineering at KAIST, is best known for being the winner of the DARPA Robotics Challenge in 2015. Hubo successfully completed its Olympic mission. That is, it had to drill through a wall to deliver the torch to the next runner. After completing the mission successfully, the torch was passed to Professor Oh. He ran a few steps and handed it over to the last runner of the Daejeon leg. The last runner was Jung Jae Lee, who is a winning team member of the Samsung Junior Software Cup. Lee also had the honor of riding and controlling FX-2 which is another robot developed by Professor Oh for this peace torch relay. FX-2 took a few steps to finalize the relay. Lee said, “I would like to become an expert in security. As I was riding the robot, I felt every step I took was one step closer to achieving of making major developments in the field of security. Professor Oh said, “It is meaningful to see humans and robots cooperating with each other to carry out the torch relay.” The torch relay, participated in by both humans and robots in Daejeon, was successfully completed and the torch headed off to Boryeong, Chungcheongnam-do.
2017.12.12
View 9198
PIBOT, a small humanoid robot flies an aircraft
The 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) took place in Chicago, Illinois, on September 14-18, 2014. Professor David Hyunchul Shim and his students from the Department of Aerospace Engineering, KAIST, presented a research paper entitled “A Robot-machine Interface for Full-functionality Automation Using a Humanoid” at the conference. The robot called “PIBOT,” a pint-sized, tiny humanoid robot, uses a mixture of flight data and visuals to fly an airplane, capable of identifying and operating all of the buttons and switches in the cockpit of a normal light aircraft designed for humans. For now, the robot is only flying a simulator, but Professor Shim expects that “PIBOT will help us have a fully automated flight experience, eventually replacing human pilots.” The IEEE Spectrum magazine published an article on PIBOT posted online September 18, 2014. Please follow the link below for the article: IEEE Spectrum, September 18, 2014 Tiny Humanoid Robot Learning to Fly Real Airplanes http://spectrum.ieee.org/automaton/robotics/humanoids/tiny-humanoid-robot-learning-to-fly-real-airplanes
2014.09.23
View 12316
KAIST sells eight HUBO 2 robots to US and Singapore.
HUBO, a humanoid robot developed by KAIST, has made its journey to the US and Singapore for the development of robotics engineering in those nations. Details on the movements of HOBO being exported aboard, please click the link of the news article: http://www.slashgear.com/kaist-sells-eight-hubo-2-robots-to-us-and-singapore-14119320/
2010.12.20
View 10064
KAIST was invited to the World Economic Forum's fourth "Summer Davos."
KAIST attended the World Economic Forum’s “Summer Davos Forum” held from September 13 to 15 in Tianjin, China. The Summer Davos Forum hosted various sessions and meetings with international dignitaries from governments, business and public organizations, and academia on the main theme of “Driving Growth through Sustainability.” On September 14, four subjects including “Electric Vehicles,” “Humanoid Robotics,” “Next Generation of Biomaterials,” and “New Developments in Neuroengineering” were presented by KAIST, followed by discussions with forum participants. Professor Jae-Seung Jeong of the Bio and Brain Engineering Department, Sang-Yup Lee of the Chemical and Biomolecular Engineering Department, Joon-Ho Oh of the Mechanical Engineering Department, and President Nam-Pyo Suh participated in the forum as presenters of the topic. Of these speakers, Professors Jae-Seung Jeong and Sang-Yup Lee were nominated by the World Economic Forum (WEF) as members of the “Young Global Leader” and “Global Agenda Council on Emerging Technologies,” respectively. President Suh was also invited to the CEO Insight Group and delivered an opening speech on OLEV (Online Electric Vehicle) and the Mobile Harbor. President Suh plans to sign an MOU for research cooperation with Jong-Hoo Kim of Bell Lab and Shirley Jackson of the Rensselaer Polytechnic Institute in the near future, respectively. Since 2007, the WEF, in charge of the world’s largest international conference called “Davos Forum” has hosted a “Summer Davos Forum,” also called as the “Annual Meeting of New Champions.” The Summer Davos Forum consists of nations, rising global companies, next generation of global leaders, and cities or nations that lead technological innovations. Unlike the annual Davos Forum held in January, the “Annual Meeting of New Champions” is held in September of each year in Tianjin and Dalian, China. Since 2009, the WEF has added a special session called IdeasLab in the Davos and Summer Davos Forums. Through IdeasLab, prominent universities from all over the world, research organizations, venture businesses, NGOs, and NPOs are invited to exchange and discuss innovative and creative ideas that can contribute to the development of mankind. Until now, universities including INSEAD, EPFL-ETH, MIT, Oxford, Yale, Harvard, Rensselaer Polytechnic Institute, Tsinghua University, and Keio University have been invited to the IdeasLab. KAIST is the first Korean university to attend this session.
2010.09.17
View 17442
President of Israel visited KAIST on June 9, 2010.
President of Israel, Shimon Peres, visited KAIST today on June 9, 2010 to witness the development of science and technology in Korea and explore ways of establishing collaboration and cooperation with industries and universities between Korea and Israel. President Peres led a delegation consisted of the Israeli Mister of Industry, Trade, and Labor, the Minister of Communication, and 60 business leaders from the top companies in the security, infrastructure, communication, high-tech, and water industries. Upon their arrival to the campus, the Israeli delegation was greeted by KAIST’s humanoid robot, “HUBO,” and then moved to its branch campus, IT Convergence Campus, for a ride of Online Electric Vehicle (OLEV) that has been developed by KAIST. The OLEV receives the necessary power through the cable lines buried underground, so it can be provided with a constant and continuous supply of electricity while running or stopping. Between roads and OLEVs is nothing but space. There is no electrical wires intricately crossed underbody of the electric car or above the road. The pick-up equipment installed beneath the body of the electric car collects magnetic fields created around the underground cables, which then converts the filed into electricity. The OLEV’s wireless, non-contact charging system made it possible for a battery currently used for hybrid or pure electric cars on the market to be smaller and cheaper. President Peres expressed a great interest in the technology applied to the OLVE, quoting, “the OLEV system is indeed very impressive.” He talked about efforts being made in Israel with respect to the development of electric cars. The country plans to replace the conventional transportation system with electric cars by constructing a network of battery exchange stations and roadside charge points which allow the cars to be charged whenever they are parked. “Despite the different approach taken by the two nations for the development of electric cars, I believe that transforming the automobile industry from combustion engine to electric system is the right direction we should all follow. Without addressing the current transportation system that heavily dependent on natural resources, we will not be able to promote “green growth on a global scale,” added President Peres. In addition to electric cars, President Peres took up a considerable portion of his time to exchange ideas on how to expand cooperative relations between universities in Korea and Israel, specifically in the area of space, biotechnology, nanotechnology, high-tech, renewable and alternative energy, and the EEWS initiatives that have been implemented by KAIST to find answers to global issues such as climate change and depletion of natural resources. The EEWS stands for energy, environment, water, and sustainability. In response, the president of KAIST pledged to set up a stronger and greater tie with research universities in Israel, particularly called for more collaboration between KAIST and Technion-Israel Institute of Technology. Also, the Israeli delegation had a tour for several Korean research and development centers in Daedeok Innopolis, located in the City of Daejeon, which is the 2nd largest science and research complex in Korea. Shimon Peres, the 9th president of Israel, held many of important government positions in Israel, among other things, Prime Minster and Minister of Defense. He won Nobel Peace Prize in 1994, together with Yitzhak Rabin and Yasser Arafat for the conclusion of a peace agreement, Oslo Accords, between Israel and Palestine Liberation Organization.
2010.06.09
View 15018
"The 2010 Artificial Intelligence Robot War Competition" begins to receive applications
[Event Notice] “The 2010 Artificial Intelligence Robot War Competition” begins to receive applications A good opportunity to gauge the intelligence of your robots “The 2010 Artificial Intelligence (AI) Robot War Competition” will be held in October 2010, and the Competition has been receiving applications from contestants since April 1st. The deadline for the application will be May 31st, 2010. Qualified contestants must be a minimum of two, but less than six, team members, and they will compete in one of the two fields: System on Chip (SoC) Taekwon Robot and Humanoid Robot (HURO). Winners will be decided based on the intelligence capabilities presented by a robot’s platform that mimics key functions of the human brain. SoC Taekwon Robot will compete against one another by using a camera installed on its head to recognize visual images, locations, distances, and gestures of the other competing robot. HURO competition is a new entry begun this year, and winners will be determined in accordance with the robot’s ability to perform given missions and fights. Missions are to go through a track installed with obstacles, recognize colors and shapes of barriers, and knock down barriers to earn scores. Fighting will be performed in the form of a Korean martial art, Tae-kwon-do. The Korean government has nominated Robotics as one of the key growth engines to develop IT industry and Korean economy. Robotics converge many of different engineering fields, such as machinery, materials, components, and embedded software. In particular, the SoC is an essential technology for Korea to continuously take lead in the semi-conductor industry in the world, which is an important element for robotics. SoC stands for System on Chip, an integrated chip that assembles various chips and components to be fabricated together on a single chip, instead of building them on a circuit board. The SoC technology has advantages of higher performance, smaller space requirements, lower memory requirements, higher system reliability, and lower consumer costs. An artificial intelligence SoC robot is autonomous because it can adapt itself to changes in various environments and reach a given goal without constantly receiving external orders. For details of the event, please refer to the website of www.socrobotwar.org.
2010.04.06
View 11940
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010.
Prime Minister Lars Løkke Rasmussen of the Kingdom of Denmark visited KAIST on March 11, 2010. HUBO, a humanoid robotdeveloped by KAIST, gave a warm welcome to the prime minister and his delegation. Prime Minister Lars Løkke Rasmussen of Denmark visited Moon-Ji Campus of KAIST on March 11, 2010 and had a chance to meet a humanoid robot, HUBO. Since the first appearance in 2005, HUBO has been continuously developed by KAIST for further refinements. HUBO welcomed the prime minister and offered him a flower bouquet. They also shook hands and exchanged small talks in Danish, which made the delegation pleasantly surprised. The Danish delegation had a ride on Online Electric Vehicle (OLEV) and showed a great interest in the technology applied therein. The prime minister said, “Denmark has a keen interest in green technology, and I was very impressed by OLEV. It is just amazing to see how fast KAIST has developed as an outstanding research university in the world during a short period of time.” President Lee Myung-bak invited the Danish prime minister to discuss current international developments, including issues involving the Korean Peninsula, and ways to enhance bilateral cooperation in such areas as trade, investment, renewable energy and green growth.
2010.03.17
View 12124
National Green Growth Project, Online Electric Vehicle, Showcased on CNN
KAIST"s green growth technologies were broadcast live on U.S. cable news network CNN from 8 a.m. to 9:30 a.m. Oct. 21. The program was part of CNN"s week-long series, titled "Eye on South Korea," focusing on how Korea is working to become a brand leader on an international scale and how the nation is recovering from the global economic recession. During the broadcast, award-winning CNN anchor and correspondent Kristie Lu Stout interviewed KAIST President Nam-Pyo Suh to hear about KAIST-developed two green-growth projects, On-Line Electric Car and Mobile Harbor. KAIST"s humanoid robot Hubo was also showcased. Live broadcasts of "Eye on South Korea" aired from Oct. 21 through 23.
2009.10.21
View 13179
U.S. and Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid
- Project aims to enable humanoids to interact with people and their environment June 1, 2009-- A Drexel University-led research team late last week unveiled the newest, most central member of its collaboration with a team of Korean researchers: Jaemi, a humanoid (HUBO). Jaemi HUBO embodies efforts to advance humanoid development and enhance the concept of human-robotic interaction. The project"s goal is to enable humanoids to interact with their environment, and enhancement plans include enabling the humanoid to move over rugged terrain, in unstructured environments and to interact socially with humans and handle objects. The five-year project, funded through the National Science Foundation (NSF) Partnership for International Research and Education (PIRE) program, seeks transformative models to catalyze discovery through international research collaboration and train U.S. students and junior researchers to effectively think and work in global teams. "The field of robotics is among the top 10 technology areas considered engines for economic growth. Korea understands this and is aggressively pursuing robotics. To stay competitive, the U.S. must do the same," said Mark Suskin, acting deputy director of NSF"s Office of International Science and Engineering. "NSF"s PIRE program and this robotics collaboration in particular, enable the U.S. to capitalize on research in other countries and remain competitive." The PIRE research team is composed of researchers at The University of Pennsylvania, Colby College, Bryn Mawr College and Virginia Tech in the United States; and Korea Advanced Institute of Science and Technology (KAIST), Korea University and Seoul National University in Korea. The team obtained a version of KAIST"s HUBO humanoid, which it named Jaemi HUBO and decided to house it at Drexel University. KAIST HUBO lab has become a model of cutting advance humanoid research by relatively small teams working on tight budgets. KAIST excels in humanoid leg and body design, biped gait (walking, running, kicking), balance (modeling and control system design), and hardware integration. U.S. robotics researchers tend to enjoy an edge in locomotion over rugged, unstructured terrain; manipulation/grasping; cognition, perception and human-robot interaction; and vision (image, understanding, navigation). This collaboration of American and Korean researchers will seek to draw on the expertise of each researcher and take Jaemi HUBO to the next level of development--that is, to improve Jaemi"s capabilities to navigate and manipulate objects and interact with people in unstructured environments. Such capabilities demand information technologies like cognition, perception and networking areas. Targeted enhancement features include a capability to move over rugged terrain and in unstructured environments and to handle objects and interact socially with humans. Jaemi HUBO will also educate the American public, particularly young people, about the science of robotics. This education process began at the Please Touch Museum in Philadelphia on May 28, 2009, when Jaemi HUBO was unveiled and introduced to a crowded audience of children and a few adults. Neither male nor female,Jaemi connected with the children, boys and girls alike. Guided by a Drexel University graduate student, Jamei moved, spoke, danced, shook hands and lead the children in a game of Simon Says. Such access to Jaemi HUBO starkly contrasts with that afforded by other high-profile humanoids that are often protected trade secrets, largely inaccessible to the public. Museum curators are pleased to have had Jaemi visit and entertain kids during the weekend. "At the Please Touch Museum, we promote learning through a variety of senses," said J. Willard Whitson,the museum"s vice president for exhibits and education. "A humanoid not only embodies our goal of building layers of knowledge in young people, but Jaemi helps all of us celebrate the playful side of technology." Jaemi HUBO is now at its permanent home at Drexel University, from which travel and guest appearances may be arranged by appointment. Journalists interested in meeting and interviewing Jaemi HUBO and other research team members are encouraged to contact Lisa-Joy Zgorski at lisajoy@nsf.gov. (Press Release of U.S. National Science Foundation)
2009.06.19
View 13705
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2