본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Dynamics+of+Signal+Transportation+System+in+Control+of+Cell+Proliferation
by recently order
by view order
Prof. Cho Identifies Dynamics of Signal Transportation System in Control of Cell Proliferation
KAIST, Jan. 22, 2009 -- A research team led by Prof. Kwang-Hyun Cho of the Department of Bio and Brain Engineering, KAIST, has identified a hidden mechanism of the dynamic behavior of signal transportation system involved in the control of cell proliferation, university authorities said. The finding is expected to provide a clue to appropriately controlling the pathway of ERK protein which is known to play a significant role in causing and spreading cancer. The research was featured as the cover paper of the latest online edition of the Journal of Cell Science. The Ras-Raf-MEK-ERK pathway (or ERK pathway) is an important signal transduction system involved in the control of cell proliferation, survival and differentiation. However, the dynamic regulation of the pathway by positive- and negative-feedback mechanism, in particular the functional role of Raf kinase inhibitor protein (RKIP) are still incompletely understood. RKIP is a physiological endogenous inhibitor of MEK phosphorylation by Raf kinases, but also participates in a positive-feedback loop in which ERK can inactivate RKIP. "We attempted to unearth the hidden dynamics of these feedback mechanisms and to identify the functional role of RKIP through combined efforts of biochemical experiments and computer simulations based on an experimentally validated mechanical model," Prof. Cho was quoted as saying.
2009.02.03
View 11317
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1