본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
AR
by recently order
by view order
A graduating student speaks about "hope" for many disabled people who dare to have a dream of becoming a scientist.
Dong-Won Kim, a graduate student of the Mechanical Engineering Department, KAIST, will leave for the US at the end of this month to further pursue his advanced degree at University of Michigan (UM) in Ann Harbor. He has completed his master’s program at KAIST this summer, specializing in rehabilitation engineering. Mr. Kim was born with cerebral palsy, which made him difficult to talk and use his hands. Notwithstanding the obstacles, he went through the regular school system and earned a master’s degree offered by one of the toughest universities in Korea. When asked about what was the most difficult thing to study, he said with a gentle smile that “other than taking him a longer time to solve a math problem because of his weak hand muscle, he doesn’t have any difficulties.” “Of course, people around me helped me a lot, but I tried to maintain my confidence in me and did my best so as not to disappoint my family and friends who have supported me,” Mr. Kim added. Professor Pyung-Hoon Chang of the Mechanical Engineering Department, who was an adviser to Mr. Kim, recalled, “Dong-Won has been a great student; I was quite impressed with his intellectual vigor and academic passion. He got along well with his peer students and had always positive and can-do attitude. I’m really pleased to see him graduate, given the tough situation he’s been in. He sets an inspiring role model who overcame difficulties and achieved great accomplishments.” Mr. Kim hopes that universities including KAIST improve their educational environment to adopt friendlier policies toward the people with disabilities so that more of them can be offered an opportunity to become a scientist or engineer. He will study medical engineering at University of Michigan—through his doctoral study, he wishes to identify causes and improvements of disabilities suffered by people and become an expert in rehabilitation. Mr. Kim also donated 1 million won to KAIST out of his appreciation for the support he had received during his stay at the school. He said, “Although this is a small amount, I’d like to “thank you” for the members of KAIST community including its faculty and staff who have encouraged me to finish the study. If possible, I’d like to make a greater contribution in the future, and to that end, I’ll study harder and try to become the person whom I have planned for.” Upon hearing about his generosity, President Nam Pyo Suh said, “The gift is so wonderful because it was given to us from one of our students. I wish him great success in his future study and will look forward to having his valuable contributions to our school and the nation.”
2010.08.17
View 10046
KAIST has developed a powerless and wireless keyboard that can be folded and easily carried around.
The KAIST Institute for Information Technology Convergence (KIITC) has developed the next generation keyboard that does not need power and wires. The powerless/wireless keyboard developed by KIITC is flexible, foldable, portable, and compact, making the possession of keyboard easier and more convenient. The idea of this technology was derived from "Idea Contest for Future Device" opened by KIITC in 2007, and Future Device Team (Team Leader: Dr. Sungkwan Jung) of KIITC embodied the idea and developed full-flexible powerless/wireless keyboard by using the passive Radio Frequency Identification (RFID) technology to support the convenient data input for daily mobile life. Through the technology, KAIST expects to realize ubiquitous computing and communication environment, open a new market for foldable keyboards, and secure the competitiveness of mobile devices industries in the world market. KIITC has also successfully transferred the technology of powerless/wireless keyboard to Hanyang Demitech for commercialization.
2010.08.12
View 11565
A graduate-level education for working professionals in science programs and exhibitions will be available from mid-August this year.
The Graduate School of Culture Technology (GSCT), KAIST, has created a new course for professionals who purse their career in science programs and exhibitions, which will start on August 19 and continue through the end of November 2010. The course will be held at Digital Media City in Seoul. The course, also co-sponsored by National Science Museum, will offer students tuition-free opportunities to brush up their knowledge on the administration, policy, culture, technology, planning, contents development, and technology & design development, of science programs and exhibitions. Such subjects as science contents, interaction exhibitions, and utilization of new media will be studied and discussed during the course. Students will also have a class that is interactive, engaging, and visual, as well as provides hands-on learning activities. A total of 30 candidates will be chosen for the course. Eligible applicants are graduates with a B.S. degree in the relevant filed, science program designers and exhibitors, curators for science and engineering museums, and policy planners for public and private science development programs.
2010.08.12
View 11015
Texas Instruments, Inc. Agreed for Collaborative Research with Professor Hai-Joon Yoo, the Electrical Engineering Department of KAIST
Professor Hai-Joon Yoo from the Electrical Engineering Department of KAIST made a research collaboration agreement with Texas Instruments (TI), Inc. in July 2010 to develop a “Many-core Processor Chip,” a chip that is designed to emulate a human brain. TI, Inc. is an American company based in Dallas, Texas and renowned for developing and commercializing semiconductor and computer technology. The company is the 4th largest manufacturer of semiconductors worldwide, 2nd supplier of chips for cellular handsets, and 1st producer of digital signal processors and analog semiconductors, among a wide range of semiconductor products. TI, Inc. has designated Professor Yoo’s lab as one of its official labs and promised to give financial supports for the lab—it has pledged to donate a total value of 300 million won of research fund and equipment to Professor Yoo. On July 21, 2010, the signboard hanging ceremony for the designation of a TI Lab was held at Professor Yoo’s lab. Professor Yoo developed a neuro-circuit network to emulate a human brain by adopting a mixed mode circuit that has chips for analog and digital circuits. He then has conducted a research to graft the mixed mode circuit onto a Many-core Processor to integrate the human intelligence into a conventional single-core processor that can process one instruction at a time. The Many-core Processor, once developed, can be applied to various kinds of products such as an artificial intelligence surveillance camera, robot, smart car, and the like. Professor Yoo has presented his research results at numerous international meetings and conferences, among other things, the International Solid-State Circuits Conference (ISSCC), a global forum sponsored by the Institute of Electrical and Electronics Engineers (IEEE) for presentation of advances in solid-state circuits and Systems-on-a-Chip. The Conference offers a unique opportunity for engineers working at the cutting edge of IC design to maintain technical currency, and to network with leading experts. Professor Yoo is a senior member of IEEE and Chairman of ISSCC in Asia.
2010.08.05
View 11359
Bioengineers develop a new strategy for accurate prediction of cellular metabolic fluxes
A team of pioneering South Korean scientists has developed a new strategy for accurately predicting cellular metabolic fluxes under various genotypic and environmental conditions. This groundbreaking research is published in the journal Proceedings of the National Academy of Sciences of the USA (PNAS) on August 2, 2010. To understand cellular metabolism and predict its metabolic capability at systems-level, systems biological analysis by modeling and simulation of metabolic network plays an important role. The team from the Korea Advanced Institute of Science and Technology (KAIST), led by Distinguished Professor Sang Yup Lee, focused their research on the development of a new strategy for more accurate prediction of cellular metabolism. “For strain improvement, biologists have made every effort to understand the global picture of biological systems and investigate the changes of all metabolic fluxes of the system under changing genotypic and environmental conditions,” said Lee. The accumulation of omics data, including genome, transcriptome, proteome, metabolome, and fluxome, provides an opportunity to understand the cellular physiology and metabolic characteristics at systems-level. With the availability of the fully annotated genome sequence, the genome-scale in silico (means “performed on computer or via computer simulation.”) metabolic models for a number of organisms have been successfully developed to improve our understanding on these biological systems. With these advances, the development of new simulation methods to analyze and integrate systematically large amounts of biological data and predict cellular metabolic capability for systems biological analysis is important. Information used to reconstruct the genome-scale in silico cell is not yet complete, which can make the simulation results different from the physiological performances of the real cell. Thus, additional information and procedures, such as providing additional constraints (constraint: a term to exclude incorrect metabolic fluxes by restricting the solution space of in silico cell) to the model, are often incorporated to improve the accuracy of the in silico cell. By employing information generated from the genome sequence and annotation, the KAIST team developed a new set of constraints, called Grouping Reaction (GR) constraints, to accurately predict metabolic fluxes. Based on the genomic information, functionally related reactions were organized into different groups. These groups were considered for the generation of GR constraints, as condition- and objective function- independent constraints. Since the method developed in this study does not require complex information but only the genome sequence and annotation, this strategy can be applied to any organism with a completely annotated genome sequence. “As we become increasingly concerned with environmental problems and the limits of fossil resources, bio-based production of chemicals from renewable biomass has been receiving great attention. Systems biological analysis by modeling and simulation of biological systems, to understand cellular metabolism and identify the targets for the strain improvement, has provided a new paradigm for developing successful bioprocesses,” concluded Lee. This new strategy for predicting cellular metabolism is expected to contribute to more accurate determination of cellular metabolic characteristics, and consequently to the development of metabolic engineering strategies for the efficient production of important industrial products and identification of new drug targets in pathogens.”
2010.08.05
View 12349
Native-like Spider Silk Produced in Metabolically Engineered Bacterium
Microscopic picture of 285 kilodalton recombinant spider silk fiber Researchers have long envied spiders’ ability to manufacture silk that is light-weighted while as strong and tough as steel or Kevlar. Indeed, finer than human hair, five times stronger by weight than steel, and three times tougher than the top quality man-made fiber Kevlar, spider dragline silk is an ideal material for numerous applications. Suggested industrial applications have ranged from parachute cords and protective clothing to composite materials in aircrafts. Also, many biomedical applications are envisioned due to its biocompatibility and biodegradability. Unfortunately, natural dragline silk cannot be conveniently obtained by farming spiders because they are highly territorial and aggressive. To develop a more sustainable process, can scientists mass-produce artificial silk while maintaining the amazing properties of native silk? That is something Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, the Republic of Korea, and his collaborators, Professor Young Hwan Park at Seoul National University and Professor David Kaplan at Tufts University, wanted to figure out. Their method is very similar to what spiders essentially do: first, expression of recombinant silk proteins; second, making the soluble silk proteins into water-insoluble fibers through spinning. For the successful expression of high molecular weight spider silk protein, Professor Lee and his colleagues pieced together the silk gene from chemically synthesized oligonucleotides, and then inserted it into the expression host (in this case, an industrially safe bacterium Escherichia coli which is normally found in our gut). Initially, the bacterium refused to the challenging task of producing high molecular weight spider silk protein due to the unique characteristics of the protein, such as extremely large size, repetitive nature of the protein structure, and biased abundance of a particular amino acid glycine. “To make E. coli synthesize this ultra high molecular weight (as big as 285 kilodalton) spider silk protein having highly repetitive amino acid sequence, we helped E. coli overcome the difficulties by systems metabolic engineering,” says Sang Yup Lee, Distinguished Professor of KAIST, who led this project. His team boosted the pool of glycyl-tRNA, the major building block of spider silk protein synthesis. “We could obtain appreciable expression of the 285 kilodalton spider silk protein, which is the largest recombinant silk protein ever produced in E. coli. That was really incredible.” says Dr. Xia. But this was only step one. The KAIST team performed high-cell-density cultures for mass production of the recombinant spider silk protein. Then, the team developed a simple, easy to scale-up purification process for the recombinant spider silk protein. The purified spider silk protein could be spun into beautiful silk fiber. To study the mechanical properties of the artificial spider silk, the researchers determined tenacity, elongation, and Young’s modulus, the three critical mechanical parameters that represent a fiber’s strength, extensibility, and stiffness. Importantly, the artificial fiber displayed the tenacity, elongation, and Young’s modulus of 508 MPa, 15%, and 21 GPa, respectively, which are comparable to those of the native spider silk. “We have offered an overall platform for mass production of native-like spider dragline silk. This platform would enable us to have broader industrial and biomedical applications for spider silk. Moreover, many other silk-like biomaterials such as elastin, collagen, byssus, resilin, and other repetitive proteins have similar features to spider silk protein. Thus, our platform should also be useful for their efficient bio-based production and applications,” concludes Professor Lee. This work is published on July 26 in the Proceedings of the National Academy of Sciences (PNAS) online.
2010.07.28
View 16744
Professor Thompson
Professor Mary Kathryn Thompson of Civil and Environmental Engineering Department wrote her regular column on correlation between art and engineering, “Engineers, Artists Not on Opposite Ends.” The column was published by the Korea Herald on July 23, 2010. For reading, please click the link below. http://www.koreaherald.com/opinion/Detail.jsp?newsMLId=20100722000548
2010.07.23
View 9535
A stream of generous donations to KAIST continues to grow.
Yi-Won Oh is nothing but an ordinary person who lives in Seoul. Ever since retirement, she has looked into ways to donate her savings for a bigger cause that will benefit the people in need and the nation as a whole. On the inauguration day of President Nam Pyo Suh who took his second term in office, Ms. Oh joined the ceremony and pledged to donate her savings to KAIST, which amounted to 10 billion won. “I’ve always thought that the best way for our country to become a developed nation that lacks natural resources and has a small land is to develop science and technology by producing excellent manpower through a quality education. I talked to President Suh a couple of times, and we shared our common belief that the future of our nation hinges on the advancement of science and technology in Korea,” said Ms. Oh. She added, “I support for President Suh’s vision and leadership, who has brought reformative and innovative changes to KAIST. I have no doubt that KAIST will become a leading research university in the world and play an important role in the development of our nation. It is indeed my pleasure that I can make announcement to donate my money to KAIST on the day President Suh is assigned to lead such a distinguished university one more time.” KAIST plans to create and operate a fund dubbed “Yi-Won Oh Scholarship and Grant for Young Chair Professors.” Through the fund, talented students suffering financial difficulties and promising, young professors will have a richer opportunity to study and research.
2010.07.21
View 9245
The incumbent head of KAIST has been reelected for the second term in office.
President Nam Pyo Suh, whose first term in office is nearing in early July, has succeeded to secure his position for the second term. The KAIST Board of Trustees held a meeting on July 2, 2010 at Westin Chosun Hotel in Seoul and selected the incumbent president to work continually for the next four years. Upon approval from the Mister of Education, Science and Technology, his second term will begin on July 14, 2010 as the 14th President of KAIST.
2010.07.07
View 9444
A new facility at KAIST opened on July 6, 2010.
Ryu Geun-Chul Sports Complelx will allow students, faculty and staff to pause a moment and exhale in the hustle and bustle of their daily lives. An opening ceremony celebrating the completion of a new facility for the KAIST family was held on July 6, 2010 at the campus. Had it not been for contributions of many people and organizations throughout the nation, among others, Dr. Geun-Chul Ryu, POSCO, Woori Bank, members of KAIST community, parents, and other citizens, it would be impossible to build the facility, said the university. The Complex, a three-story building with a basement, has an indoor court for basketball and volleyball with 3,000 individual seats, 200 meters of running track, indoor golf range, a fitness center, and other convenient facilities. Any members of KAIST community can visit the building and relax their body and mind stressed with work and study. It also provides a large space for ceremonial and cultural gatherings such as 2010 KAIST commencement ceremony. The official name of the building is “Ryu Geun-Chul Sports Complelx,” which was created in appreciation of Dr. Geun-Chul Ryu’s generous act who had donated 57.8 billion won worth of real estate to KAIST in August 2008.
2010.07.07
View 11951
The 8th International Conference on Metabolic Engineering was held on June 13-18, 2010 in Jeju Island, South Korea.
From left to right, top row: Distinguished Professor and the conference chair Sang Yup Lee, Sang-Hyup Kim - Secretary to the President of Korea, Dr. Jay Keasling, Dr. Greg Stephanopoulos. Left to right, bottom row: Dr. William Provine, Dr. Terry Papoutsakis, Dr, Jens Nielsen, Dr. Lars Nielsen. The importance of industrial biotechnology that produces chemicals and materials from renewable biomass is increasing due to climate change and the dearth of natural resources. Industrial biotechnology refers to a technology that allows sustainable bio-based production of chemicals and materials that could enrich human"s lives using microorganisms. This is where metabolic engineering comes into play for successful application of microorganisms, in which they are engineered in our intended way for improved production capability. The 8th International Conference on Metabolic Engineering, the longest running conference of its kind, was held on June 13-18, 2010 at the International Convention Center in Jeju Island, South Korea. Distinguished Professor Sang Yup Lee of KAIST, Dean of College of Life Science and Bioengineering and Co-Director of Institute for the BioCentury, chaired the conference with the main theme of "metabolic engineering for green growth." With 300 delegates selected by the committee, papers on production of biofuels, chemicals, biopolymers, and pharmaceutics and the development of fundamental metabolic engineering techniques were presented at the conference along with examples of successful commercialization of products developed by several global companies. Sang Hyup Kim, Secretary to the President of Korea, gave an opening plenary lecture entitled "Korean green growth initiative," to inform experts from around the globe of the leadership on green growth in Korea. Young Hoon Park, President of Korea Research Institute of Bioscience and Biotechnology (KRIBB, Korea) delivered his congratulatory address. Sang Hyup Kim said, "Hosting an international conference in Korea on metabolic engineering, which forms a core technology necessary for the development of environmentally friendly processes for producing chemicals and biofuels from renewable biomass, is very meaningful as green growth is a big issue around the globe. This is a great chance to show the excellence of Korea"s green growth associated technology to experts in metabolic engineering and industrial biotechnology." A total of 47 invited lectures in this conference included recent and important topics, for instance, "Synthetic biology for synthetic fuels" by Dr. Jay Keasling from the Joint BioEnergy Institute (USA), "Microbial oil production from renewable feedstocks" by Dr. Greg Stephanopoulos from MIT (USA), "Yeast as a platform cell factory for production of fuels and chemicals" by Dr. Jens Nielsen from Chalmers University (Sweden), "Mammalian synthetic biology - from tools to therapies" by Dr. Martin Fussengger from ETH (Switzerland), "Building, modeling, and applications of metabolic and transcriptional regulatory networks at a genome-scale" by Dr. Bernhard Palsson from the University of California - San Diego (USA), "Genome analysis and engineering Eschericha coli for sucrose utilization" by Dr. Lars Nielsen from the University of Queensland (Australia), "Artificial microorganisms by synthetic biology" by Dr. Daniel Gibson from JCVI (USA), and "Metabolomics and its applications" by Dr. Masaru Tomita from Keio University (Japan). From Korea, Dr. Jin Hwan Park from the research group of Dr. Sang Yup Lee at KAIST presented "Systems metabolic engineering of Escherichia coli for amino acid production," and Dr. Ji Hyun Kim from KRIBB presented "Genome sequencing and omics systems analysis of the protein cell factory of Escherichia coli". Global companies involved in biorefinery presented their recent research outcomes with emphasis on commercialized technologies. They included "Metabolic and process engineering for commercial outcomes" by Dr. William Provine from DuPont (USA), "Direct production of 1,4-butanediol from renewable feedstocks" by Dr. Mark Burk from Genomatica (USA), "Development of an economically sustainable bioprocess for the production of bio 1,2-propanediol" by Dr. Francis Voelker from Metabolic Explorer (France), "Biotechnology to the bottom-line: low pH lactic acid production at industrial scale" by Dr. Pirkko Suominen from Cargill (USA), "Bioisoprene™: traditional monomer, traditional chemistry, sustainable source" by Dr. Gregg Whited from Danisco (USA) and "Efficient production of pharmaceuticals by engineered fungi" by Dr. Roel Bovenberg from DSM (Netherlands). This biennial conference also presented the International Metabolic Engineering Award (expanded version of the previous Merck Metabolic Engineering Award) to the best metabolic engineer in the world. The 2010 International Metabolic Engineering Award went to Dr. E. Terry Papoutsakis from the University of Delaware (USA) who has contributed to the production of biobutanol through the metabolic engineering of Clostridia in the last three decades, and he gave an award lecture. Dr. Sang Yup Lee, the current chair of the upcoming conference, was the previous recipient of this award at the last metabolic engineering conference in 2008. In addition to the invited lectures, a total of 156 carefully selected poster papers were chosen for presentation, and awards were presented to the best posters after rigorous review by the committee members. Such awards included "The 2010 Metabolic Engineering Best Poster Award" and the "2010 Young Metabolic Engineer Award" from the Metabolic Engineering conference, and prestigious international journal awards, including "Wiley Biotechnology Journal Best Poster Award", "Wiley Biotechnology and Bioengineering Best Poster Award" and "Elsevier Metabolic Engineering Best Paper Award." Dr. Catherine Goodman, a senior editor of Nature Chemical Biology, also presented the "Nature Chemical Biology Best Poster Award on Metabolic Engineering." Regarding this conference, Dr. Sang Yup Lee, the conference chair, said, "This conference is the best international conference in the field of metabolic engineering, which is held every two years, and Korea is the first Asian country to host it. All the experts and students spend time together from early breakfast to late poster sessions, which is a distinct feature of this conference. Although the number of delegates had typically been limited to 200, around 300 delegates were selected this year to accept more attendees from many people who have been interested in metabolic engineering. Also, it is very fitting that "green growth" is the main topic of this conference because Korea is playing a key role in this field. I"m grateful to the Lotte Scholarship Foundation, COFCO, GS Caltex, Bioneer, US DOE, US NSF, Daesang, CJ Cheiljedang, Genomatica and DuPont who provided us with generous financial support that allowed the successful organization of this conference." The conference was organized by the Systems Biology Research Project Team supported by the Ministry of Eduction, Science and Technology (MEST), Microbial Frontier Research Project Group, World Class University Project Group at KAIST, Institute for the BioCentury at KAIST, Korean Society for Biotechnology and Bioengineering, and the Engineering Conference International (ECI) of the United States. Inquiries: Professor Sang Yup Lee (+82-42-350-3930), industrialbio@gmail.com
2010.06.25
View 17835
The 2010 International Forum on Electric Vehicle will be held at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea.
Universities, industries, and governments from the world gathered to make an important endeavor for the commercialization of electric vehicles that has emerged as a strong option to replace conventional cars with an internal combustion engine. With the potential benefit of electric cars, in view of environmental protection and less dependence of oil import, they still have limitations for the daily use in customers’ perspective. Electric cars are still very expensive to own with relatively short distance of driving with one charging and with the expensive and bulky nature of the batteries, in addition to the safety concerns with the Lithium batteries. The Korea Advanced Institute of Science and Technology (KAIST) will hold an international forum, at which it hopes to address a wide range of issues related to the development and commercialization of electric vehicles. The 2010 International Forum on Electric Vehicle will be held for three days at KAIST’s campus in Daejeon, South Korea, from June 17th to 19th, 2010. Internationally renowned speakers from Korea and overseas will present their views and conduct a discussion forum on the technology, market, and policy on electric vehicles. The event is open to the public. Major discussions, however, will take place on the second day, Friday, June 18, 2010, which will proceed with two sessions. In the first session, conference participants will discuss the topic of “policies and markets for electric vehicles,” and at the second session, they will take up the issue of “electric vehicle technologies.” Dr. Andrew Brown, president of SAE International and the executive director and chief technologist of Delphi, is scheduled to give a key note speech. The SAE International is a global association of more than 128,000 engineers and related technical experts in the aerospace, automotive, and commercial vehicle industries. Topics to be covered by Dr. Brown during his key note speech are, among other things, elements of market forces for hybrid electric vehicles, electric vehicles, or battery-powered vehicles; clean technologies necessary for sustainable development; pending issues facing the automotive industry to create a substantial share by electric cars and government aids to increase consumers’ buying power for expensive electric cars; technology innovation required for the improvement of batteries and power electronics; development of smart grids; and other key issues that would mature an ever-growing market for electric vehicles. President Nam Pyo Suh of KAIST will also deliver a key note remark on the overall accomplishments of online electric vehicle (OLEV) developed by KAIST. While stressing the OLEV’s technological breakthrough to succeed in the wireless in-motion power transfer through electromagnetic induction, President Suh will review the necessity of developing electric cars as a corresponding measure against climate changes and address the issues of battery weight and lifespan, charging time, and the limited amount of reserved Lithium. Dr. Steven Shladover from the California Partners for Advanced Transit and Highways (California PATH), established in 1986 in collaboration with the University of California in Berkeley and the California Transit, will attend the conference. California PATH is a multi-disciplinary program with universities statewide and cooperative projects with private industry, state and local agencies, and non-profit institutions to find solutions to the problems of California’s surface transportation systems through cutting edge research. California PATH once implemented a bold, innovative research project in the early 1990s in order to overcome the most difficult technical hurdle to reduce the heavy dependence of batteries for electric cars by adopting a non-contact transfer of electric power during vehicles’ movement. Despite the research declared as “unsuccessful” by California PATH, the implications of their innovative approach to solve an important issue inspired many researches subsequently followed—one of them is KAIST’s OLEV project. In addition, the Infineon Technologies AG, a leading semiconductor and system manufacturer based in Germany, which offers solutions for automotive, industrial and multimarket sectors for applications in communication and memory products, will come to the forum and present a paper on its expertise to develop the necessary components for electric vehicles. On the last day of the forum, all participants will have a chance to ride the Online Electric Vehicle (OLEV) at KAIST’s campus. For details of the event, please visit the website of “www.olev.co.kr/en/ifev or refer to the invitation attached herewith. About KAIST’s Online Electric Vehicle: The Online Electric Vehicle (OLEV) developed by KAIST is a dynamic plug-in electric car that receives electricity while running or stopping and thus acquired a complete mobility unlike other type of electric cars, whether hybrid or not. The OLEV reduces the size of a battery to one-fifth of the current battery installed in an electric car. Pure electric cars depend on a large bulky battery that has been a major obstacle to make the cars commercially accessible to the mass market. The OLEV gets charged wirelessly, a distinct difference to other dynamic plug-in electric cars including a tram or trolley, which directly picks up electricity from the road. To explain it further, the OLEV is electrified through power lines buried underground; when flowing low frequency of currents, an electric magnetic field is created around the underground power lines, and the pick-up gadget installed underbody of an electric vehicle converts the field into electricity; and the vehicle then uses electricity either for operation or stores it at a battery to be used for running the road that is not equipped with the power lines. The electric power generated from the underground travels to the surface of the road above 20cm-25cm. KAIST has succeeded to develop a commercial model of OLEV with a safe Electromagnetic Field (EMF), well below the international safeguard of 65mG. The actual model has been up and running at an amusement park in Seoul for the transportation of passengers. The non-contact charging method applied to the OLEV will accelerate the commercialization of electric cars by making a battery affordable and safer for a consumer.
2010.06.25
View 12952
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 96