본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
AR
by recently order
by view order
Kaist expresses appreciation to a Swedish nurse served in the Korean War and donated a scholarship.
Public release date: 19-Dec-2011 [ Print | E-mail | Share ] [ Close Window ] Contact: Lan Yoon hlyoon@kaist.ac.kr 82-423-502-295 The Korea Advanced Institute of Science and Technology (KAIST) Kaist expresses appreciation to a Swedish nurse served in the Korean War and donated a scholarship The largest private donation ever given to KTH Royal Institute of Technology in Stockholm, Sweden, will include a scholarship for KAIST students to study there The largest private donation ever given to KTH Royal Institute of Technology in Stockholm, Sweden, will include a scholarship for KAIST students to study there. "I"ve never forgotten the tragedy of the Korean War that I witnessed as a nurse, even today, more than 60 years later. I"m glad to contribute to a wider cooperation in science and technology between Sweden and Korea," said the donor. Daejeon, Republic of Korea, December 19, 2011— On Monday, December 19th, 2011 at 4:00 pm (Central European Time), at KTH Royal Institute of Technology (KTH) in Stockholm, KAIST (Korea Advanced Institute of Science and Technology) presented a plaque of appreciation to a Swedish couple, Rune and Kerstin Jonasson, whose generous donation will establish a scholarship fund for KAIST students. In late June of 2011, the Jonassons donated 70 million Krona ($10 million USD) to KTH, the largest lump sum donation ever given to the university by an individual, and the couple requested that a portion of the money be used to promote academic interaction and collaboration with Korean universities. KTH had various student exchange programs with KAIST, and with the financial support from the Jonassons, the two universities have decided to invite KAIST students to study at KTH. Enjoying a long tradition of excellence in higher education in Asia and Northern Europe, KAIST and KTH have continued to lead the development of science and technology through top-notch educational programs, dynamic research experiences, technological innovation, and highly skilled and motivated manpower. The two global research universities expect that the scholarship program will add another dimension to already expanding exchanges. Kerstin Jonasson, 88 years old, came to Korea in 1951 when she was 28, and served a six-month tour of duty as a nurse in the Korean War. Recalling her past, Mrs. Jonasson said, "The calamity of the war remains deeply engraved in my mind." Ever since returning from the battlefield, she has been seeking ways to help Korea, and has thus been regularly involved in volunteer activities to strengthen bilateral relations between Korea and Sweden. Chang-Dong Yoo, Associate Vice President of Special Projects & Institutional Relations at KAIST, thanked the couple while presenting them with the award on behalf of KAIST family including President Nam-Pyo Suh. "We feel greatly indebted to the Jonassons, most particularly to Kerstin Jonasson, who came to Korea during the toughest time in our modern history and rendered generous humanitarian assistance to Koreans. Not only that, Mrs. Jonasson has continued to play an important role, up to today, as a "Goodwill Ambassador for Korea" in bringing the two countries closer than ever. This scholarship will provide our students with excellent opportunities to study in Sweden, the home of many great scientists, as well as to experience the robust and vibrant Nordic culture." In response, Kerstin Jonasson said: "I"m grateful to the Korean people who, over the past 60 years, have consistently expressed their appreciation for my work during the Korean War, and I"m really proud of the fact that they"ve made Korea a great country, reemerging from the destitution of the war as an important power of democracy and economy in the world. My husband and I hope that our donation will further enhance the strong ties forged between Sweden and Korea, and that KTH and KAIST will become the centerpiece of a mutually beneficial relationship between the two countries through the advancement of science and technology." The details of the scholarship have yet to be finalized, but the fund is expected to be approximately 10 to 15 million Krona ($1.4~$2.1 million USD) to be spread out over five years. KAIST aims to begin sending students to KTH in the fall of 2012, and will select 10~12 graduate students for the exchange program. Since 1990, 38 KAIST students have studied at KTH, and 50 KTH students have studied at KAIST. ###
2011.12.23
View 9563
Ten Breakthroughs of the Year 2011 by Science
Porous Zeolite Crytals Science, an internationally renowned scientific journal based in the US, has recently released a special issue of “Breakthrough of the Year, 2011,” dated December 23, 2011. In the issue, the journal introduces ten most important research breakthroughs made this year, and Professor Ryong Ryoo, Department of Chemistry at KAIST, was one of the scientists behind such notable advancements in 2011. Professor Ryoo has been highly regarded internationally for his research on the development of synthetic version of zeolites, a family of porous minerals that is widely used for products such as laundry detergents, cat litters, etc. Below is the article from Science, stating the zeolite research: For Science’s “Breakthrough of the Year, 2011”, please go to: http://www.sciencemag.org/site/special/btoy2011/ [Excerpt from the December 23, 2011 Issue of Science] Industrial Molecules, Tailor-Made If you ever doubt that chemistry is still a creative endeavor, just look at zeolites. This family of porous minerals was first discovered in 1756. They"re formed from different arrangements of aluminum, silicon, and oxygen atoms that crystallize into holey structures pocked with a perfect arrangement of pores. Over the past 250 years, 40 natural zeolites have been discovered, and chemists have chipped in roughly 150 more synthetic versions. View larger version: In this page In a new window Assembly required. Porous zeolite crystals are widely used as filters and catalysts. This year, researchers found new ways to tailor the size of their pores and create thinner, cheaper membranes. CREDIT: K. VAROON ET AL., SCIENCE334, 6052 (7 OCTOBER 2001) This abundance isn"t just for show. Three million tons of zeolites are produced every year for use in laundry detergents, cat litter, and many other products. But zeolites really strut their stuff in two uses: as catalysts and molecular sieves. Oil refineries use zeolite catalysts to break down long hydrocarbon chains in oil into the shorter, volatile hydrocarbons in gasoline. And the minerals" small, regularly arranged pores make them ideal filters for purifying everything from the air on spaceships to the contaminated water around the nuclear reactors destroyed earlier this year in Fukushima, Japan. Zeolites have their limitations, though. Their pores are almost universally tiny, making it tough to use them as catalysts for large molecules. And they"re difficult to form into ultrathin membranes, which researchers would like to do to enable cheaper separations. But progress by numerous teams on zeolite synthesis this year gave this “mature” area of chemistry new life. Researchers in South Korea crafted a family of zeolites in which the usual network of small pores is surrounded by walls holed with larger voids. That combination of large and small pores should lead to catalysts for numerous large organic molecules. Labs in Spain and China produced related large- and small-pore zeolites by using a combination of inorganic and organic materials to guide the structures as they formed. Meanwhile, researchers in France and Germany discovered that, by carefully controlling growth conditions, they could form a large-pore zeolite without the need for the expensive organic compounds typically used to guide their architecture as they grow. The advance opens the way for cheaper catalysts. In yet another lab, researchers in Minnesota came up with a new route for making ultrathin zeolite membranes, which are likely to be useful as a wide variety of chemically selective filters. This surge of molecular wizardry provides a vivid reminder that the creativity of chemists keeps their field ever young. Related References and Web Sites
2011.12.23
View 12603
Honorary Doctorate Presented to President of the Royal Swedish Academy of Sciences
KAIST presented to Dr. Svante Lindqvist, President of the Royal Swedish Academy of Sciences and Marshal of the Realm to the Swedish Royal Court, an honorary doctorate in science and technology on the 21st of November at Fusion Hall, KI Building. Dr. Lindqvist, a pioneer in the field of history of science and technology, showed how science and technology have affected the development of human civilization. His work in explaining the relationship between science and history made it easier to the public to understand the importance of science in our society, upon which he was conferred the honorary doctorate. Director Lindqvist obtained a doctorate from the Uppsala University of Sweden in 1984 with the dissertation, “Introduction of Steam Locomotive in 18th century Sweden.” This single dissertation won him three awards, which has been regarded even today as an introductory reading text to readers in the field of science history. Dr. Lindqvist established the Department of History of Science and Technology in Sweden Royal Institute of Technology in 1989 and was the department chair for nine years until 1997. He then became the founding director of the Nobel Museum from 1998 to 2009 and developed the museum from a mere display venue of Nobel’s legacy to a multifunctional research oriented institute that supports and holds various outreach activities such as seminars and public lectures. From the visit of Dr. Lindqvist to KAIST, students had a wonderful opportunity to engage with an internationally renowned scholar and, once more, to remind the university"s vision and mission, whereby they make contributions to the development of science, and ultimately, to the advancement of humanity.
2011.12.13
View 10675
2011 International Presidential Forum on Global Research Universities
KAIST’s 4th International Presidential Forum Held in Seoul on November 8, 2011 The largest annual congregation of university presidents in Asia invited leaders from academia, government, and industry for talks on issues related to higher education in the Age of Globalization. Borderless and Creative Education: the ability to cross borders a crucial key to dominate the information era Seoul, Republic of Korea, November 8, 2011—The Korea Advanced Institute of Science and Technology (KAIST) hosted the “2011 International Presidential Forum on Global Research Universities (IPFGRU)” on Tuesday, November 8, 2011 at the Millennium Hilton Hotel in Seoul. With more than 120 participants from 44 institutions in 27 countries present, the full-day forum provided participants with an opportunity to discuss challenges and responsibilities facing higher education in a time of globalization that has resulted from an ever-growing demand for technological innovation. In his plenary speech, Dr. Robert Birgeneau, Chancellor of UC Berkeley, stressed that “Higher educational intuitions must be prepared to drive innovation and enhance competitiveness by educating a highly trained workforce that will have the critical skills necessary to solve problems and lead in today’s interdependent world.” “Finding solutions to the world’s most challenging problems will depend on the ability to cross borders: national borders, border between different fields of discipline and research, and borders between academe, government, and industry,” said Chancellor Birgeneau to address the importance of “borderless and creative education,” the theme of the forum. Other major keynote speakers were Jörg Steinbach, President of Technische Universität Berlin, Lars Pallesen, President of Technical University of Denmark, Paul F. Greenfield, President of University of Queensland, Marcelo Fernandes de Aquino, President of the University of the Sinos Valley (UNISINOS), and Eden Woon, Vice President of the Hong Kong University of Science and Technology. Dr. Nam-Pyo Suh, President of KAIST, gave talks on the university’s new education plan, “The I-Four Education,” at the afternoon session. The four Is are information technology (IT), independent learning, integrated knowledge acquisitions, and an international learning environment. “In this format, there are no formal lectures,” President Suh explained. “A group of students learn together by using the materials available on the internet, doing homework and conducting experiments together. Pre-recorded lectures are delivered in English by I-Four professors, some of them regular KAIST professors and some professors in other countries who participate in the I-Four Program as consulting professors.” He added, “The overall purpose of the I-Four Education Program is to encourage students to learn independently, gain exposure to the best lectures by the most eminent professors in the world, accelerate the development of a global frame of reference in the students by dealing with information available throughout the world, and provide an integrated learning environment by using diverse examples from many disciplines to achieve understanding of basic principles.” The 2011 IPFGRU, the fourth forum since its inception in 2008, rose to prominence in the past years as an international network for leaders of research universities from around the world to share information and exchange views about contemporary issues in higher education. At this year’s forum, entitled “Borderless and Creative Education,” speakers took a deeper look into the transitions and transformations many research universities are undergoing today, delving into the following topics: the development of e-learning and cyber campuses; increased student mobility and international collaborations; multi-disciplinary and convergence approaches in research and education; and methodology of nurturing future global leaders. Participants also discussed experiences and accomplishments earned from their own endeavors to accommodate such changes and presented ways to strengthen internationalization and improve the academic and research competitiveness of universities. The 2011 International Presidential Forum on Global Research Universities (IPFGRU) was organized by KAIST and sponsored by the Ministry of Education, Science and Technology, POSCO, Hyundai Motor Company, Samsung Heavy Industries, S-Oil, and Elsevier Korea.
2011.11.09
View 13755
New York Times, "First, Catch Your Faculty-A Recipe for Excellence"
The World Bank has recently published a new book entitled “The Road to Academic Excellence: The Making of World Class Research Universities.” The report (book) examined the recent experience of 11 universities in 9 countries (for Korea, it sampled Pohang University of Science and Technology, established in 1986) that have undergone transformations in order to become world-class universities. The book has received a wide coverage from the media all around the world since its publication in late September, among others, the latest article by New York Times (NYT), dated October 16, 2011. The gist of the book, i.e., what elements are required should a research university to become “truly prestigious” in the global scene, is well introduced by the NYT article, and here’s the link: New York Times, “First, Catch Your Faculty-A Recipe for Excellence” http://www.nytimes.com/2011/10/17/world/americas/17iht-educLede17.html
2011.10.17
View 11535
Fusion performing arts, called space musical, 'NARO' performed at KAIST
In commemoration of the 6th anniversary of the establishment of the Graduate School of Cultural Technology, KAIST organized an English musical show on space at the Auditorium on the 29th and 30th of September. The name of the musical was NARO. The musical was funded by the ‘NaDa Center’ operated by KAIST’s Graduate School of Cultural Technology. The musical was created with participation from adolescents, which told a tale about a genius boy Naro’s journey in space. The musical was composed of two parts, and the basic storyline was about Naro who conducts research based on space, and his friends went on a time travel to the constellation Scorpios; more specifically, it was a Korean traditional children’s story about a brother and sister who became the sun and the moon. Naro and his friends prevent the plot of Tyran, a villan, who plans on destroying the space and Earth by inducing a red giant star, Antares. In preparation for the musical, NaDa Center selected 14 students ranging from elementary to high school students during March of 2011. The selected students met every Saturday and Sunday from March to September for practice; a gargantuan commitment. The theme of the musical is space, the future, and hope, and it does not utilize any stage settings. Instead, it attempts the incorporation of high technology into the stage by using interactive video, laser art, and specially built props. In addition, the entire process from script to performance and advertisement was utilized as an education model to suggest a good fusion between science and technology and cultural arts. The musical ‘NARO’ is a collective effort. Professor Won Kwan Yeon who pioneered the field of Cultural Technology directed the musical, Professor Koo Bon Chul was in charge of the script and music composition, acting was charged to Lee Min Ho, choreography was charged to Han Eun Kyung, astrological reference was charged to Park Seok Jae among other students in the Graduate School of Cultural Technology. Members of the KAIST Acting Club ‘Lee Bak Teo’, Jeong Soo Han, Son Sharon and graduate of Chung Nam National University with vocal music major Yang Su Ji also made appearances. The Space Musical ‘NARO’ was funded by the Korea Astronomy and Space Science Institute, Korea Aerospace Research Institute, and LG School of Multi Culture.
2011.10.10
View 11036
"2011 Korean Language and Culture Festival" held in commemoration of KAIST 40th Anniversary
“2011 Korean Language and Culture Festival” was hosted by KAIST from the 5th of October to the 8th of October for 4 days at various locations within campus and BaekJae Cultural Complex in Daejeon City. The festival was aimed at increasing foreigners’ understanding about Korean culture and language and at the same time, introduced about KAIST, the home of the best minds in Korea’s science and technology. The festival was part of the KAIST 40th anniversary celebratory events, which included 1) Korean Speaking Competition, 2) Korean Traditional Music Performance by Daejeon City Orchestra, 3) Foreigners Talent Show, 4) Tour of BaekJae Cultural Complex, and others such as lecture given by Chairman Lee Cham of Korea Tourism Organization. In the Korean Speaking Competition, 10 foreigners who passed the preliminaries competed by giving speeches with the theme on “Korea that I’ve experienced.” The speakers were given 5 minutes for speech, and their presentations were graded based on uniqueness, fluency, appropriateness, and fluidity in spoken Korean. 200,000 Korean Won was given to a winner as prize. In addition, the chance for foreigners to visit the BaekJae Cultural Complex allowed them to experience firsthand “traditional Korean culture,” through which they had a good opportunity to develop a better understanding on Korea as a whole. Director of KAIST Language Center Michael Park commented, “The festival was a meaningful and important occasion for foreigners to appreciate Korean culture and language, and it would be a great step towards foreigners’ gaining a solid understanding of Korean culture and language to the extent that they become to know better about DaeJeon, the city they live in.”
2011.10.10
View 9015
Professor Son Hoon received "Structural Health Monitoring Person of the Year Award."
Professor Son Hoon (42) of the Department of Civil and Environmental Engineering received the “Structural Health Monitoring Person of the Year Award” at an international workshop on structural health monitoring held in Stanford University. The award is given by the editor and advisors of prestigious international magazine, “Journal of Structural Health Monitoring,” to a researcher with the best research record in a year. Professor Son has published 42 SCI level dissertations, registered 17 patents both domestically and internationally, and presented over 100 papers in international journals, for which he was recognized with the award. Professor Son is the first Korean who receives this award. One of the most significant achievements by Professor Son was “reference-free damage diagnosis” that he had developed in 2007. The diagnosis allows for the detection of wear and tear of a structure without having to use the foundation signal from the initial stages of the structure. The diagnosis contributed greatly in increasing the reliability of the signal information received from smart sensors attached to the structure by eliminating the environmental impact like temperature. Professor Son is currently working on green energy structural health monitoring system development related projects. His current work deals with airplanes, bridges, nuclear facilities, high speed railways, wind turbines, and etc. in cooperation with Boeing, United States Air Force Research Institute, Korea Research Foundation, Ministry of Defense Research Institute, Korea Expressway Corporation, POSCO, and etc. In addition, Professor Son successfully adopted a local monitoring method using smart piezoelectric sensors on a bridge in New Jersey as part of the Long Term Bridge Performance Program initiated by the National Highway Bureau. The success was even introduced in New Jersey’s public TV and newspaper agencies. Professor Son was given tenure at a record age of 39 in 2008 and received numerous awards given out by the Ministry of Education and Science and international organizations like the ‘Edward M Curtis’ Professor Award from Purdue University.
2011.10.10
View 11187
10th Annual POSTECH-KAIST Competition: 'Revenge of the Blue Dragon'
KAIST is out for revenge after losing last year in the POSTECH-KAIST Annual Competition, a college rivalry between the two science and technology schools. The competition was held over two days, 23rd and 24th of September and involved 2,000 students from the two universities. The POSTECH-KAIST Competition, also known as ‘Science War,’ is an annual event which started in 2002 to encourage active interaction between the two universities and increase public interest in science and technology education. The 2011 Competition marked the 10th competition as the 2009 competition was cancelled due to “swine influenza.” The Competition is held every mid-September, and the title of the competition depends on the venue; the name of the host university is marked last by convention, hence the 2011 Science War was known as ‘POSTECH-KAIST Competition’ since the competition was held in KAIST. The competition is composed of Hacking Competition, Science Trivia, Artificial Intelligence Programming Contest, StarCraft, Soccer, Baseball, and Basketball. 800 points are up for grabs, and the university with the most points wins. Both universities have won four times and lost four times and therefore promises to be a mouthwatering encounter this year. Apart from the various competitions, interaction between clubs, cheerleading performances, and congratulatory concert (Dynamic Duo) were prepared. In addition, a beer party was hosted from 11pm of the first day of the competition to 2am the following day which brought students from the two universities closer together. President Seo Nam Pyo of KAIST commented, “I am very happy that the two universities at the forefront of Korean Science and Technology can come together to interact and compete wholeheartedly through the 10th POSTECH-KAIST Competition” and that, “I hope that the students can exhibit the skills and ability that they have practiced hard on and uphold the proud history and tradition of KAIST.” All games can be viewed at http://voki.kaist.ac.kr after the end of the Competition.
2011.09.26
View 8503
New Technology Developed for Analysis of New Drugs by Using Smart Nano-Sensors
Doctor Sang-Kyu Lee Doctor Sang-Kyu Lee of the Department of Biological Sciences, KAIST, has developed the technology that allows biological nano particles to be implanted into human cells for monitoring the effect of new drugs in real time from within the cell. It is expected that this technology will boost the ability to weigh the effects and properties of a new drug more quickly and accurately. Conventionally, the candidate drug was injected into the human body, and then its cells are extracted to analyze the effects of the drugs. The problem with this method was that the cells were analyzed at a ‘dead’ state which made it incredibly difficult to find candidate substances due to uncontrollable side effects. This made the development of new drugs very difficult despite the large costs and efforts invested into its development. The research team latched onto the idea that nanoparticles can connect to form a large complex. The complex acts as a nanosensor which allows for real time observation of drug target and the drug itself binding. The team named the nanosensor technology ‘InCell SMART-i’ and was named ‘Hot Paper’ of the September edition of ‘Angewandte Chemie International Edition’ magazine, a world famous Chemistry Magazine.When a new drug injected into the human body, the drug and drug targets are gradually combined, and the smart nanosensor detects in real time the effect of the new drug as shown in the pictures above (shaded spot).
2011.09.19
View 9788
Future of Petrochemical Industry: The Age of Bio-Refineries
The concept of bio-refinery is based on using biomass from seaweeds and non-edible plant sources to produce various materials. Bio-refineries has been looked into with increasing interest in modern times due to the advent of global warming (and the subsequent changes in the atmosphere) and the exhaustion of natural resources. However past 20 years of research in metabolic engineering had a crucial limitation; the need to improve the efficiency of the microorganisms that actually go about converting biomass into biochemical materials. In order to compensate for the inefficiency, Professor Lee Sang Yeop combined systems biology, composite biology, evolutionary engineering to form ‘systems metabolic engineering’. This allows combining various data to explain the organism’s state in a multi-dimensional scope and respond accordingly by controlling the metabolism. The result of the experiment is set as the cover dissertation of ‘Trends in Biotechnology’ magazine’s August edition.
2011.07.28
View 12027
Wireless electric trams at Seoul Amusement Park begin full operations.
Photo by Hyung-Joon Jun IMMEDIATE RELEASE Wireless electric trams at Seoul Amusement Park begin full operations. KAIST’s On-Line Electric Vehicle (OLEV) becomes an icon of green technology, particularly for young students who aspire to transform their nation into the “vanguard of sustainability.” Seoul, South Korea, July 19, 2011—As young students wrap up their school work before summer vacation in late July, Seoul Grand Park, an amusement park located south of Seoul, is busily preparing to accommodate throngs of summer visitors. Among the park’s routine preparations, however, there is something new to introduce to guests this summer: three wireless electric trams have replaced the old diesel-powered carts used by passengers for transportation within the park. The Korea Advanced Institute of Science and Technology (KAIST) and the city of Seoul held a ceremony this morning, July 19, 2011, to celebrate their joint efforts to adopt a green public transportation system and presented park visitors with the three On-Line Electric Vehicles (OLEVs), which will be operated immediately thereafter. Approximately one hundred people, including science high school students across the nation, attended the ceremony and had a chance to ride the trams. KAIST unveiled the prototype of an electric tram to the public in March 2010, and since then it has developed three commercial trams. The Korean government and the institute have worked on legal issues to embark on the full-scale commercialization of OLEV, and the long awaited approval from the government on such issues as standardization of the OLEV technology and road infrastructure, regulation of electromagnetic fields and electricity safety, and license and permits for vehicle eligibility, finally came through. The On-Line Electric Vehicle (OLEV) is no ordinary electric car in that it is remotely charged via electromagnetic fields created by electric cables buried beneath the road. Unlike other currently available electric cars, OLEV can travel unlimited distances without having to stop to recharge. OLEV also has a small battery onboard, which enables the vehicle to travel on roads that are not equipped with underground power cables. This battery, however, is only one-fifth of the size of a conventional electric vehicle battery, resulting in considerable savings in the cost, size, and weight of the vehicle. The OLEV project was initiated in 2009 as a method of resolving the battery problems of electric cars in a creative and disruptive way. KAIST came up with the idea of supplying electricity directly to the cars instead of depending solely on the onboard battery for power. Since then, the university has developed core technologies related to OLEV such as the “Shaped Magnetic Field in Resonance (SMFIR),” which enables an electric car to collect the magnetic fields and convert them into electricity, and the “Segment Technology,” which controls the flow of electromagnetic waves through an automatic power-on/shut-down system, thereby eliminating accidental exposure of the electromagnetic waves to pedestrians or non-OLEV cars. According to KAIST, three types of OLEV have been developed thus far: electric buses, trams, and sport utility vehicles (SUVs). The technical specifications of the most recently developed OLEV (an electric bus), the OLEV research team at the university said, are as follows: · Power cables are buried 15cm beneath the road surface. · On average, over 80% power transmission efficiency is achieved. · The distance gap between the road surface and the underbody of the vehicle is 20cm. · The OLEV bus has a maximum electricity pickup capacity of 100kW. · The OLEV bus complies with international standards for electromagnetic fields (below 24.1 mG). The eco-friendly electric trams at Seoul Grand Park consume no fossil fuels and do not require any overhead wires or cables. Out of the total circular driving route (2.2km), only 16% of the road, 372.5m, has the embedded power lines, indicating that OLEV does not require extensive reconstruction of the road infrastructure. The city government of Seoul signed a memorandum of understanding with KAIST in 2009 as part of its initiatives to curtail emissions from public transportation and provide cleaner air to its citizens. Both parties plan to expand such collaboration to other transportation systems including buses in the future. KAIST expects the OLEV technology to be applied in industries ranging from transportation to electronics, aviation, maritime transportation, robotics, and leisure. There are several ongoing international collaborative projects to utilize the OLEV technology for a variety of transportation needs, such as inner city commute systems (bus and trolley) and airport shuttle buses, in nations including Malaysia, US, Germany, and Denmark. # # # More information about KAIST’s On-Line Electric Vehicle can be found at http://olev.co.kr/en/index.php. For any inquiries, please contact Lan Yoon at 82-42-350-2295 (cell: 82-10-2539-4303) or by email at hlyoon@kaist.ac.kr.
2011.07.22
View 15807
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 98