본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Engineering
by recently order
by view order
Professor Soon-Heung Chang meets with Bill Gates and discusses possible collaboration
Professor Soon-Heung Chang from the Department of Nuclear and Quantum Engineering, KAIST, who is also the president of Korea Nuclear Society (KNS), met Bill Gates, the co-founder and former chief executive officer (CEO) of Microsoft, on August 16, 2012 and discussed ways to cooperate for the development of a sodium-cooled fast reactor (SFR), a next generation nuclear power reactor. According to Professor Chang, Bill Gates was amazed at Korea’s successful bids for nuclear power plants in the United Arab Emirates, even though Korea was a latecomer in the field of nuclear power. Bill Gates also showed a keen interest in Korea’s low electricity rates. Gates focuses on solving fundamental problems in order to help improve the quality of life for humanity, rather than short-term temporary solutions, through infrastructure development such as energy. Particularly, he considers nuclear power as one of the most effective ways to supply clean energy which can provide electricity at a low cost while keeping carbon dioxide emission levels much lower than fossil fuels. Bill Gates is a primary investor for an energy company called “TerraPower” based in Bellevue, Washington. TerraPower develops and commercializes nuclear power technology for a traveling wave reactor (TWR) that is designed to use spent fuels, i.e., depleted uranium, and runs technically “forever” because once fueled, the reactor does not need to be refueled for over 50 years. TerraPower’s TWR is to use metallic fuel, and Korea is the only country that currently develops SFR (KALIMER 600) using metallic fuel. “Korea has an outstanding supply chain for the entire lifecycle of a nuclear power station from equipment manufacturing to operation,” said Professor Chang, while emphasizing the synergistic effects of forming partnership between Korea and TerraPower. Professor Chang emphasized that Korea should create an opportunity based on lessons learned from the Fukushima crisis and actively move forward to achieve its leading position in the field of next generation nuclear reactors. He said that cooperation with Bill Gates will be a significant step towards the development of next generation nuclear reactors. About Sodium-cooled Fast Reactor (SFR) Sodium-cooled Fast Reactor (SFR) is a next-generation nuclear power reactor that will use spent fuels from conventional reactors. Arrangement of a fuel recycling system in conjunction with currently-developing pyroprocessing technology would enable U-238, which makes up over 99% of natural uranium, to be used as a nuclear fuel. This would greatly reduce the toxicity and volume of spent fuels by up to 1,000 times and 100 times respectively when compared to existing reactors. This is truly a breakthrough innovation in spent fuel disposal and recycling.
2012.09.20
View 10011
Liver Damage Mechanism of Hepatitis C Proven
KAIST researchers found mechanics behind a Hepatitis C virus, thereby taking a step closer to the development of a cure for Hepatitis C. Professor Choi Chul Hui (Department of Biological and Brain Engineering) and Professor Shin Eui Chul (Graduate School of Medical Sciences) proved, for the first time in the world, the mechanism behind liver damage of a patient with Hepatitis C. It is anticipated that this discovery will allow for the development of a Hepatitis C cure that has no side effects and little Liver damage. Hepatitis C is an immune response of the body to the Hepatitis C virus and causes liver irritation. Around 170million people are infected with Hepatitis C worldwide including 1% of the Korean population. Once infected, most cases turn into chronic cases and may lead to liver cancer. However it was impossible to infect Hepatitis C within a test tube cell environment until 2005 and up till then Chimpanzees were used to study the virus which proved to be a huge barrier to research. The research team used cells infected with Hepatitis C virus and found out that the virus works by increasing the destruction of cells by the TNF-a protein responsible for the cell’s immune response. In addition the protein structure of the virus that causes this reaction was successfully found. Conventionally the Hepatitis C medication focused on the suppressing the growth of the virus and therefore had many side effects. The experimental results allow new medication aimed at suppressing the actual mechanism of liver damage to be discovered. The result was selected as the cover dissertation of the September Edition of the Hepatolog magazine.
2012.09.11
View 11483
Professor Kim Eun Joon receives In Chon Award
Professor Kim Eun Joon (Department of Biological Sciences) received the In Chon Awarded hosted by In Chon Memorial and Dong Ah Newspaper. The Award Ceremony will be held on the 8th of October in Seoul Lotte Hotel and Professor Kim will be given a medal and prize money amounting 100million Korean Won. Professor Kim is a world renowned research in the field of Synapses. Professor Kim graduated from the Department of Pharmacy in Pusan University, B.A. at KAIST, and Ph.D at Michigan University. He has been a Professor at KAIST since 2000.
2012.09.11
View 7814
Professor Song Joon Hwa develops new Location Tracking Application
Professor Song Joon Hwa developed a location tracking application that alerts the teacher when students on field trips stray too far from the group via a smartphone and a headset. Conventional Location Tracking Applications utilize GPS systems and as a consequence does not function indoors where the satellite signal is nonexistent. However Professor Song’s method is unique in the fact that it utilizes radio waves which allows signal transfer both indoors and outdoors. In addition different alerts are given off in difference locations and therefore the technology can be applied in finding the effectiveness of the field trip and the social behaviors of students.
2012.09.11
View 7582
Jellyfish removal robot developed
Professor Myung Hyun’s research team from the Department of Civil and Environmental Engineering at KAIST has developed a jellyfish removal robot named ‘JEROS’ (JEROS: Jellyfish Elimination RObotic Swarm). With jellyfish attacks around the south-west coast of Korea becoming a serious problem, causing deaths and operational losses (around 3 billion won a year), Professor Myung’s team started the development of this unmanned automatic jellyfish removal system 3 years ago. JEROS floats on the surface of the water using two long cylindrical bodies. Motors are attached to the bodies such that the robot can move back and forth as well as rotate on water. A camera and GPS system allows the JEROS to detect jellyfish swarm as well as plan and calculate its work path relative to its position. The jellyfish are removed by a submerged net that sucks them up using the velocity created by the unmanned sailing. Once caught, the jellyfish are pulverized using a special propeller. JEROS is estimated to be 3 times more economical than manual removal. Upon experimentation, it showed a removal rate of 400kg per hour at 6 knots. To reach similar effectiveness as manual net removal, which removes up to 1 ton per hour, the research team designed the robot such that 3 or more individual robots could be grouped together and controlled as one. The research team has finished conducting removal tests in Gunsan and Masan and plan to commercialize the robot next April after improving the removal technology. JEROS technology can also be used for a wide range of purposes such as patrolling and guarding, preventing oil spills or removing floating waste. This research was funded by the Ministry of Education, Science and Technology since 2010.
2012.08.29
View 11187
Hosting of Third Annual 2012 Social Web International Workshop
KAIST Department of WebScience Engineering hosted the 2012 Social Web International Workshop in JaeJu Ramada Hotel. The 3rd Annual International Workshop involves the coming together of domestic and international experts on various fields like sociology, journalism, electronics, economics, and etc. to introduce and discuss the direction of social web’s numerous factions. Dr. Krishna Gummadi (Max Plank Research Institute), Professor Irwin King (Chinese University of Hong Kong), Dr. Winter Mason (Stevens Technology Research Institute), and Professor Daniele Quercia (Cambridge University) made up the international participants of the workshop. Professor Kim Yong Chan (Yonsei University), Professor Kim Ye Ran (KwangWoon University), Professor Park Ju Yong (Kyung Hee University), Professor Oh Hae Yeon and Professor Lee Won Jae (KAIST) made up the domestic participants to the workshop. The workshop was a place for free discussion of social networks and apps and the research direction of social sciences.
2012.08.21
View 7236
Ultra Elastic Electrode Material Developed
KAIST research team succeeded in developing the next generation flexible and elastic electrode material crucial in the development of flexible displays, wearable computers, and etc. Professor Jeon Seok Woo’s team of the department of Materials Science and Engineering succeeded in the development of a super elastic material. The result of the experiment was introduced as the research highlight in Nature Communications and is especially significant as the main driving force behind the achievement were domestic researchers. Professor Jeons team developed a structured three dimensional nano-porous structure over a 1inch by 1inch area that is 10micrometers in thickness. The structure is fabricated using world’s largest area three dimensional nano patterning technique. The nano-porous structure was injected with elastomeric material and was subsequently removed to yield an inverse three dimensional elastic nano material. The pores were infiltrated with liquid conductive material which yielded a super elastic flexible electrode. The fabricated electrode showed amazing elasticity levels and was able to light LED lamps in a 200% stretched state without decrease in electrical conductivity. Conventional methods included folding and expanding a material like an accordion or creating a mesh-like structure by making holes in the material. However these methods yielded materials with limited elasticity and even 100% stretching resulted in the drastic decrease in electrical conductivity. Professor Jeon expects the domestically developed technology to obtain the upper hand in the market and make great contributions in both science and society.
2012.07.26
View 8952
Commercialization of Carbon Capture and Storage Technology Speeds up
KAIST research team successfully developed the ideal method for carbon dioxide transportation, which is crucial in the capturing and underground storage of carbon dioxide technology. Professor Jang Dae Joon of the department of Ocean Systems Engineering developed a carbon dioxide transportation that minimizes evaporative gases. The new technology is the final piece of the three part carbon capture storage which involves capture, transportation, and storage of carbon dioxide. The completion of the three part technology will allow for commercialization in the near future. Carbon Capture and Storage technology is regarded as the technology that will reduce carbon dioxide levels. It captures the carbon dioxide emitted from power plants and factories and storing them permanently in empty oil fields underground. If the post Kyoto Protocol was to be implemented from 2013, Korea will not be able to shirk from the need to reduce carbon emissions. Therefore the Korean government set out to reduce 32 million tons of carbon dioxide (10% of predicted carbon reduction) until 2030. In response to the government’s efforts to reduce carbon dioxide emissions, Korean research teams like KAIST have responded. Professor Jang’s team succeeded in developing the core technology for underground storage in the 2009 ‘Carbon dioxide Transport and Injection Terminal Project’. And as the final piece of the puzzle the team developed an optimization solution that addressed the evaporating gases emitted from carbon dioxide during transportation. Professor Jang’s team focused on the required low temperature and high pressure conditions in liquid carbon dioxide transport. The problem lies in the temperature gradient which can cause the transport canister to explode. The solution developed by the team is to evaporate carbon dioxide in a pressurized contained which is then re-liquidated. External variables like price of oil, carbon taxation, etc. have been considered and the process was optimized accordingly. The result of Professor Jang’s team’s solution to Carbon Capture and Storage was stored in the online edition of International Journal of Greenhouse Gas Control.
2012.07.26
View 8909
Systems biology demystifies the resistance mechanism of targeted cancer medication
Korean researchers have found the fundamental resistance mechanism of the MEK inhibitor, a recently highlighted chemotherapy method, laying the foundation for future research on overcoming cancer drug resistance and improving cancer survival rates. This research is meaningful because it was conducted through systems biology, a fusion of IT and biotechnology. The research was conducted by Professor Gwang hyun Cho’s team from the Department of Biology at KAIST and was supported by the Ministry of Education, Science and Technology and the National Research Foundation of Korea. The research was published as the cover paper for the June edition of the Journal of Molecular Cell Biology (Title: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor). Targeted anticancer medication targets certain molecules in the signaling pathway of the tumor cell and not only has fewer side effects than pre-existing anticancer medication, but also has high clinical efficacy. The technology also allows the creation of personalized medication and has been widely praised by scientists worldwide. However, resistances to the targeted medication have often been found before or during the clinical stage, eventually causing the medications to fail to reach the drug development stage. Moreover, even if the drug is effective, the survival rate is low and the redevelopment rate is high. An active pathway in most tumor cells is the ERK (Extracellular signal-regulated kinases) signaling pathway. This pathway is especially important in the development of skin cancer or thyroid cancer, which are developed by the mutation of the BRAF gene inside the path. In these cases, the MEK (Extracellular signal-regulated kinases) inhibitor is an effective treatment because it targets the pathway itself. However, the built-up resistance to the inhibitor commonly leads to the redevelopment of cancer. Professor Cho’s research team used large scale computer simulations to analyze the fundamental resistance mechanism of the MEK inhibitor and used molecular cell biological experiments as well as bio-imaging* techniques to verify the results. * Bio-imaging: Checking biological phenomena at the cellular and molecular levels using imagery The research team used different mutational variables, which revealed that the use of the MEK inhibitor reduced the transmission of the ERK signal but led to the activation of another signaling pathway (the PI3K signaling pathway), reducing the effectiveness of the medication. Professor Cho’s team also found that this response originated from the complex interaction between the signaling matter as well as the feedback network structure, suggesting that the mix of the MEK inhibitor with other drugs could improve the effects of the targeted anticancer medication. Professor Cho stated that this research was the first of its kind to examine the drug resistivity against the MEK inhibitor at the systematic dimension and showed how the effects of drugs on the signaling pathways of cells could be predicted using computer simulation. It also showed how basic research on signaling networks can be applied to clinical drug use, successfully suggesting a new research platform on overcoming resistance to targeting medication using its fundamental mechanism.
2012.07.06
View 10498
New wireless charging device developed
The On-line Electric Vehicle (OLEV) developed by KAIST has made a step towards commercialization with the development of a more economic wireless charging device. Professor Chun-Taek Rim from the Department of Nuclear and Quantum Engineering at KAIST has developed a new I-shaped wireless charging device that differs from the pre-existing rail-type electricity feeder. This device can be modularly produced and requires relatively less construction, significantly reducing the cost of implementation. The KAIST OLEV is a new concept electric car that has a special electricity collecting device underneath it. The car’s battery is charged by magnetic fields produced from electric lines buried 15cm underneath the road. The vehicle was first tested in 2009, making it the first wireless electric car in the world. OLEV can be charged during stoppage time between traffic lights and receives real-time power when running. OLEV is currently in operation at the KAIST Munji Campus in Daejeon and is also being exhibited at the Yeosu Expo and Seoul Grand Park. The device itself has a charging capacity of 15kW, and the electricity is supplied through an electricity feeder with a width of 80cm with a space interval of 20cm. Despite being hailed as a technological breakthrough and revolutionary concept, KAIST OLEV has been criticized for problems in commercialization, due to the difficulties in installing wires beneath existing roads, which costs a considerable amount of money. The new I-shaped wireless charging device reduces the width of the electricity feeder by 10cm, a mere one-eighth of the size of the previous version, and greatly increases the charging power to 25kW. Furthermore, the left and right permissible space of automobiles has increased to 24cm and the magnetic field complies with the international design guidelines, making the OLEV safe for the human body. The reduction of the width has made the mass production of modules possible, making the installation of KAIST OLEV more economical and marketable. Professor Rim emphasized that compared with the existing rail-type electricity feeder, the new technology will need only one-tenth of the construction time and 80% of the cost, significantly improving OLEV’s constructability and workability. The research was published in the IEEE Transactions on Power Electronics last December, and Professor Rim was invited to talk at the Conference on Electric Roads & Vehicles, which was held in February in the United States, about the new technology.
2012.07.06
View 10801
Flexible Nanogenerator Technology
KAIST research team successfully developed the foundation technology that will enable to fabrication of low cost, large area nanogenerator. Professor Lee Gun Jae’s team (Department of Materials Science and Engineering) published a dissertation on a nanogenerator using nanocomplexes as the cover dissertation of the June edition of Advanced Materials. The developed technology is receiving rave reviews for having overcome the complex and size limitations of the nanogenerator fabrication process. A nanogenerator is an electricity generator that uses materials in the nanoscale and uses piezoelectricity that creates electricity with the application of physical force. The generation technology using piezoelectricity was appointed as one of top 10 promising technologies by MIT in 2009 and was included in the 45 innovative technologies that will shake the world by Popular Science Magazine in 2010. The only nanogenerator thus far was the ZnO model suggested by Georgia Tech’s Professor Zhong Lin Wang in 2005. Professor Lee’s team used ceramic thin film material BaTiO3 which has 15~20 times greater piezoelectric capacity than ZnO and thus improved the overall performance of the device. The use of a nanocomplex allows large scale production and the simplification of the fabrication process itself. The team created a mixture of PDMS (polydimethylsiloxane) with BaTiO3 and either of CNT (Carbon Nanotube) or RGO (Reduced Graphene Oxide) which has high electrical conductivity and applied this mixture to create a large scale nanogenerator.
2012.06.18
View 12461
Production of chemicals without petroleum
Systems metabolic engineering of microorganisms allows efficient production of natural and non-natural chemicals from renewable non-food biomass In our everyday life, we use gasoline, diesel, plastics, rubbers, and numerous chemicals that are derived from fossil oil through petrochemical refinery processes. However, this is not sustainable due to the limited nature of fossil resources. Furthermore, our world is facing problems associated with climate change and other environmental problems due to the increasing use of fossil resources. One solution to address above problems is the use of renewable non-food biomass for the production of chemicals, fuels and materials through biorefineries. Microorganisms are used as biocatalysts for converting biomass to the products of interest. However, when microorganisms are isolated from nature, their efficiencies of producing our desired chemicals and materials are rather low. Metabolic engineering is thus performed to improve cellular characteristics to desired levels. Over the last decade, much advances have been made in systems biology that allows system-wide characterization of cellular networks, both qualitatively and quantitatively, followed by whole-cell level engineering based on these findings. Furthermore, rapid advances in synthetic biology allow design and synthesis of fine controlled metabolic and gene regulatory circuits. The strategies and methods of systems biology and synthetic biology are rapidly integrated with metabolic engineering, thus resulting in "systems metabolic engineering". In the paper published online in Nature Chemical Biology on May 17, Professor Sang Yup Lee and his colleagues at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea present new general strategies of systems metabolic engineering for developing microorganisms for the production of natural and non-natural chemicals from renewable biomass. They first classified the chemicals to be produced into four categories based on whether they have thus far been identified to exist in nature (natural vs. nonnatural) and whether they can be produced by inherent pathways of microorganisms (inherent, noninherent, or created): natural-inherent, natural-noninherent, non-natural-noninherent, and non-natural-created ones. General strategies for systems metabolic engineering of microorganisms for the production of these chemicals using various tools and methods based on omics, genome-scale metabolic modeling and simulation, evolutionary engineering, synthetic biology are suggested with relevant examples. For the production of non-natural chemicals, strategies for the construction of synthetic metabolic pathways are also suggested. Having collected diverse tools and methods for systems metabolic engineering, authors also suggest how to use them and their possible limitations. Professor Sang Yup Lee said "It is expected that increasing number of chemicals and materials will be produced through biorefineries. We are now equipped with new strategies for developing microbial strains that can produce our desired products at very high efficiencies, thus allowing cost competitiveness to those produced by petrochemical refineries." Editor of Nature Chemical Biology, Dr. Catherine Goodman, said "It is exciting to see how quickly science is progressing in this field – ideas that used to be science fiction are taking shape in research labs and biorefineries. The article by Professor Lee and his colleagues not only highlights the most advanced techniques and strategies available, but offers critical advice to progress the field as a whole." The works of Professor Lee have been supported by the Advanced Biomass Center and Intelligent Synthetic Biology Center of Global Frontier Program from the Korean Ministry of Education, Science and Technology through National Research Foundation. Contact: Dr. Sang Yup Lee, Distinguished Professor and Dean, KAIST, Daejeon, Korea (leesy@kaist.ac.kr, +82-42-350-3930)
2012.05.23
View 11731
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 87