본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
CO
by recently order
by view order
KAIST Research Team Unveils Method to Fabricate Photonic Janus Balls
A research team led by Prof. Seung-Man Yang of the Department of Chemical and Biomolecular Engineering has found a method to fabricate photonic Janus balls with isotropic structural colors. The finding draws attention since the newly-fabricated photonic balls may prove useful pigments for the realization of e-paper or flexible electronic displays. The breakthrough was published in the Nov. 3 edition of the science journal "Advanced Materials." The Nov. 6 issue of "Nature" also featured it as one of the research highlights under the title of "Future Pixels." Prof. Yang"s research team found that tiny marbles, black on one side and colored on the other, can be made by "curing" suspensions of silica particles with an ultraviolet lamp. When an electric field is applied, the marbles line up so that the black sides all face upwards, which suggests they may prove useful pigments for flexible electronic displays. The researchers suspended a flow of carbon-black particles mixed with silica and a transparent or colored silica flow in a resin that polymerizes under ultraviolet light. They then passed the mixture through a tiny see-through tube. The light solidified the silica and resin as balls with differently colored regions, each about 200 micrometers in diameter. Over the last decades, the development of industrial platforms to artificially fabricate structural color pigments has been a pressing issue in the research areas of materials science and optics. Prof. Yang, who is also the director of the National Creative Research Initiative Center for Integrated Optofluidic Systems, has led the researches focused on fabrication of functional nano-materials through the process of assembling nano-building blocks into designed patterns. The "complementary hybridization of optical and fluidic devices for integrated optofluidic systems" research was supported by a grant from the Creative Research Initiative Program of the Ministry of Education, Science & Technology.
2008.11.12
View 12995
KAIST, Microsoft Research to Set up Research Collaboration Center
KAIST, Korea"s premier institution for science and technology research and education, and Microsoft Research (MSR), the research arm of Microsoft Corp, signed a memorandum of understanding (MOU) to establish a joint research collaboration center in Korea on Oct. 20. The research collaboration center to be located at the KAIST campus in the Daedeok science and technology town 150 kilometers south of Seoul will be dedicated to promoting joint researches, curriculum innovation, talent fostering and academic exchange in the Asian region. The MOU signing ceremony at the Westin Chosun Hotel in Seoul was attended by President Nam-Pyo Suh and Vice President Soon-Heung Chang from KAIST, and Craig Mundie, Chief Research and Strategy Officer of Microsoft Corp, and Hsiao-Wuen Hon, Managing Director of MSR Asia from Microsoft. “We are excited to be working so closely with Microsoft Research,” KAIST President Suh said. “This is the first of many alliances we hope to establish with the world’s industrial leaders that will enable us to resolve some of the toughest problems in computer science and accelerate the next generation of innovation in computing technology and its application in other scientific researches.” Dr. Hon said: “For over 10 years, Microsoft Research has been committed to working with leading universities throughout Asia to spur computer science research and to strengthen Asia’s knowledge economies by helping foster their capabilities. The Microsoft-KAIST Research Collaboration Center demonstrates our continued efforts to strengthen relations with universities in Korea and build new partnerships with academia here.” In the last three years, Microsoft Research and KAIST have engaged in close collaboration through research projects, student support programs, and various academic exchange activities. One of the major projects was to construct software development library specifically dedicated to systems biology. A number of excellent students from KAIST participated in the internship program at Microsoft Research in Beijing, China and Redmond, United States. The establishment of the Microsoft-KAIST research collaboration center will bring the collaborative relations between KAIST and MSR to a new level. The center will provide a platform which unites the innovative minds of KAIST and Microsoft Research to develop technologies that will impact the way people live, learn, work, and play, a KAIST spokesman said.
2008.10.30
View 15981
SoC Robot War 2008 Wraps Up 4-Day Competition
The 2008 Intelligent SoC Robot War hosted by KAIST wrapped up its four-day competition on Sunday, Oct. 19, at the Indian Hall of Convention & Exhibition Center (COEX) in southern Seoul. At the annual contest featuring battles between mechanical robots utilizing System on Chip (SoC) technology, Seoul National University of Technology"s "Fiperion" won top award in the Tank Robot category and Chungbuk National University"s "What is FPGA?" was the champion in the Taekwon Robot category. In the Tank Robot contest, robots in the form of tanks engaged in duels with laser beams through visual recognition, wireless communication, and audio recognition. On the other hand, the Taekwon Robot contest was a hand-to-hand fight. The robots had to be capable of recognizing the opponent, defending and attacking without external control. A total of 20 teams in the Tank Robot category and 10 teams in the Taekwon Robot category passed through the preliminary assessments and vied in the final competition. The annual event started seven years ago. The preliminary assessments conducted between July and September drew a total of 150 teams nationwide. Any team consisting of more than two people and under six undergraduate or graduate students are eligible to take part in the competition. This year"s event was co-sponsored by Altera, a U.S.-based leading semiconductor manufacturer. Each of the two top-award winning teams received U.S.$1,000 in cash and 10 pieces of DE2 board which is worth $2,700.
2008.10.22
View 10767
KAIST, KRIBB Agree to Cooperate in Research of Convergence Technologies
Oct. 15, 2008 -- KAIST and Korea Research Institute of Bioscience and Biotechnology (KRIBB) have agreed to cooperate in the research of convergence fields of biotechnology, information technology and nanotechnology. To this end, the two institutions concluded a memorandum of understanding to create a new academia-institute cooperative model in the convergence fields on Oct. 15 in Seoul, with KAIST President Nam-Pyo Suh, KRIBB Director Young-Hoon Park and Vice Minister of Education, Science and Technology Jong-Koo Park in attendance. Under the agreement, the two institutions will set up the tentatively-named KAIST-KRIBB BINT Convergence Institute for the development of technologies and nurturing skilled manpower in the convergence fields. The partnership of the two institutions is expected to bring broad-based cooperation opportunities and create a massive synergy effect by combining their resources and infrastructure for the development of convergence technologies, KAIST officials said.. The proposed institute is also designed to build a world-class research hub in systems biotechnology by combining strengths of the two institutions with initiatives to achieve the Korean government"s new vision for "low carbon, green growth." The institute will also serve as a base for domestic brain convergence by concentrating the nation"s research capacities in genetics and brain technology. KAIST also signed a memorandum of understanding for cooperation in researches in Oriental medicine with three institutions, KRIBB, Daegu Hanny University and Korea Institute of Oriental Medicine. The agreement calls for the four institutions to conduct joint researches in traditional sciences and Oriental medicine based on systems biology, develop manpower in related fields and share academic and research information. The agreement is expected to provide impetus to reinforcing competitiveness in compound and convergence technologies and discover new properties in Oriental medicine, according to KAIST authorities.
2008.10.16
View 14870
KAIST Team Identifies Nano-scale Origin of Toughness in Rare Earth-added Silicon Carbide
A research team led by Prof. Do-Kyung Kim of the Department of Materials Science and Engineering of KAIST has identified the nano-scale origin of the toughness in rare-earth doped silicon carbide (RE-SiC), university sources said on Monday (Oct. 6). The research was conducted jointly with a U.S. team headed by Prof. R. O. Ritchie of the Department of Materials Science and Engineering, University of California, Berkeley. The findings were carried in the online edition of Nano Letters published by the American Chemical Association. Silicon carbide, a ceramic material known to be one of the hardest substances, are potential candidate materials for many ultrahigh-temperature structural applications. For example, if SiC, instead of metallic alloys, is used in gas-turbine engines for power generation and aerospace applications, operating temperatures of many hundred degrees higher can be obtained with a consequent dramatic increase in thermodynamic efficiency and reduced fuel consumption. However, the use of such ceramic materials has so far been severely limited since the origin of the toughness in RE-SiC remained unknown thus far. In order to investigate the origin of the toughness in RE-SiC, the researchers attempted to examine the mechanistic nature of the cracking events, which they found to occur precisely along the interface between SiC grains and the nano-scale grain-boundary phase, by using ultrahigh-resolution transmission electron microscopy and atomic-scale spectroscopy. The research found that for optimal toughness, the relative elastic modulus across the grain-boundary phase and the interfacial fracture toughness are the most critical material parameters; both can be altered with appropriate choice of rare-earth elements. In addition to identifying the nano-scale origin of the toughness in RE-SiC, the findings also contributed to precisely predicting how the use of various rare-earth elements lead to difference in toughness. University sources said that the findings will significantly advance the date when RE-SiC will replace metallic alloys in gas-turbine engines for power generation and aerospace applications.
2008.10.08
View 13921
KAIST Professor Finds Paradox in Human Behaviors on Road
-Strange as it might seem, closing roads can cut delays A new route opened to ease traffic jam, but commuting time has not been reduced.Conversely, motorists reached their destinations in shorter times after a big street was closed. These paradoxical phenomena are the result of human selfishness, according to recent findings of a research team led by a KAIST physics professor. Prof. Ha-Woong Jeong, 40, at the Department of Physics, conducted a joint research with a team from Santa Fe Institute of the U.S. to analyze the behaviors of drivers in Boston, New York and London. Their study found that when individual drivers, fed with traffic information via various kinds of media, try to choose the quickest route, it can cause delays for others and even worsen congestion. Prof. Jeong and his group"s study will be published in the Sept. 18 edition of the authoritative Physical Review Letters. The London-based Economist magazine introduced Prof. Jeong"s finding in its latest edition. Prof. Jeong, a pioneer in the study of "complex system," has published more than 70 research papers in the world"s leading science journals, including Nature, PNAS and Physical Review Letters. "Initially, my study was to reduce annoyance from traffic jam during rush hours," Prof. Jeong said. "Ultimately, it is purposed to eliminate inefficiency located in various corners of social activities, with the help of the network science." The Economist article read (in part): "...when individual drivers each try to choose the quickest route it can cause delays for others and even increase hold-ups in the entire road network. "The physicists give a simplified example of how this can happen: trying to reach a destination either by using a short but narrow bridge or a longer but wide motorway. In their hypothetical case, the combined travel time of all the drivers is minimized if half use the bridge and half the motorway. But that is not what happens. Some drivers will switch to the bridge to shorten their commute, but as the traffic builds up there the motorway starts to look like a better bet, so some switch back. Eventually the traffic flow on the two routes settles into what game theory calls a Nash equilibrium, named after John Nash, the mathematician who described it. This is the point where no individual driver could arrive any faster by switching routes. "The researchers looked at how this equilibrium could arise if travelling across Boston from Harvard Square to Boston Common. They analysed 246 different links in the road network that could be used for the journey and calculated traffic flows at different volumes to produce what they call a “price of anarchy” (POA). This is the ratio of the total cost of the Nash equilibrium to the total cost of an optimal traffic flow directed by an omniscient traffic controller. In Boston they found that at high traffic levels drivers face a POA which results in journey times 30% longer than if motorists were co-ordinated into an optimal traffic flow. Much the same thing was found in London (a POA of up to 24% for journeys between Borough and Farringdon Underground stations) and New York (a POA of up to 28% from Washington Market Park to Queens Midtown Tunnel). "Modifying the road network could reduce delays. And contrary to popular belief, a simple way to do that might be to close certain roads. This is known as Braess’s paradox, after another mathematician, Dietrich Braess, who found that adding extra capacity to a network can sometimes reduce its overall efficiency. "In Boston the group looked to see if the paradox could be created by closing any of the 246 links. In 240 cases their analysis showed that a closure increased traffic problems. But closing any one of the remaining six streets reduced the POA of the new Nash equilibrium. Much the same thing was found in London and New York. More work needs to be done to understand these effects, say the researchers. But even so, planners should note that there is now evidence that even a well intentioned new road may make traffic jams worse."
2008.09.18
View 13289
Research University Presidents Discuss Global Network to Increase Cooperation
Presidents and leaders of research universities participating in the 2008 International Presidential Forum on Global Research Universities (IPFGRU) held at the Westin Chosun Hotel in Seoul, Korea on Sept. 8, 2008 exchanged views and ideas on how to build and effectively utilize a global research network in order to increase cooperation and exchanges among institutions of science and technology across the world. The participants agreed on the need to promote the sharing of expertise and facilities, conduct joint researches and positively implement dual degree, roaming professorship and other programs that help institutions in societies at different stages of scientific and technological development maximize the fruits of their research activities. As a major goal, the participants agreed to create alliances for research and education that can become a new paradigm for global cooperation, with the outcome of discussions at the 2008 IPFGRU providing the guidelines for future endeavors in this direction. Through the day-long symposium, participants reached general agreements on the following points: --The concept of sharing faculty or roaming professorship should be actively promoted in order to accelerate global dissemination of academic expertise with the institutions and state authorities concerned easing existing restrictions to such arrangements and ensuring maximum academic freedom of professors involved. --Dual degree programs especially those involving institutions of different countries need to be further encouraged in view of their benefits of resources sharing, expansion of knowledge and cultural exchanges and that educational authorities should try to remove various forms of limitations. --As competitions over university ranking would grow intensive as institutions seek to attract better students and more donations, there is need to institutionalize a fairer, globally recognized national, regional and international assessment systems. --In view of rapid expansion of interdisciplinary researches which calls for the sharing of facilities and expertise among different institutions, it is necessary to establish national or regional hubs to make state-of-the-art facilities and equipment available for researchers and research programs experiencing limitations in financial and material resources. --National governments and political leaders should better recognize the importance of science and technology for societal and global prosperity and the science and technology community needs to make more communicative approaches to politicians so that greater trust may be built between them. --Arrangements to conduct joint research involving international industries, academia and government should be accelerated with a view to addressing the common problems facing the mankind in the 21st century, including energy, environment, water, food and sustainability. The United Nations and other international organizations need to provide stronger support for research universities’ efforts in this direction. --Research universities across the world should make concerted efforts to establish a global cooperative network that can facilitate the flow of information, resources and research personnel to realize universal advancement of science and technology and, ultimately, enhance the quality of human life. Keynote speakers and panelists and the subjects of their presentations were: Participants" List Topic Name of University Speaker Position 1. Roaming Professorships: To Whose Benefit? Illinois Institute of Technology John L. Anderson President Improving the Competitiveness of Global University Education National University of Sciences and Technology Muhammad Mushtaq Pro-Rector Improving the Competitiveness of Global University Education Tianjin University Fuling Yang Director of International Cooperation Office Sharing Differences in Culture and Environment for Sustainable Education for the Future Generation Kumamoto University Tatsuro Sakimoto President Sharing Differences in Culture and Environment for Sustainable Education for the Future Generation Odessa National I. I. Mechnikov University Sergiy Skorokhod Vice Rector for International Cooperation Promoting Science and Engineering Education among Secondary Students Czech Technical University of Prague Miroslav Vlcek Vice Rector Promoting Science and Engineering Education among Secondary Students South China University of Technology Xueqing Qiu Vice President Preserving and Utilizing Expert Knowledge for Better Education Eotvos Loran University Jösef Nemes-Nagy Vice Dean 2. Dual Degree Programs: Future Potential & Challenges University of Queensland Paul Greenfield President and Vice Chancellor Benefits of Dual Degree Program Institut National des Sciences Appliquées de Lyon Martin Raynaud Director, International Relations Benefits and Limitations of Dual Degree Program National Institute of Development Administration Pradit Wanarat Vice President for Academic Affairs The Role of Dual Degree Program Easing Brain Drain Nanyang Technological University Lam Khin Yong Associate Provost, Graduate Education & Special Projects International Dual Degree Programs and Strategies Georgia Institute of Technology Steven W. McLaughlin Vice Provost, International Initiatives Dual Degree Program and Global Learning Networks City University of Hong Kong Richard Yan-Ki Ho Special Advisor to the President Raising International IQs of Scientists and Engineers for Global Enterprise Technion, Israel Institute of Technology Moshe Shpitalni Dean, Graduate Studies Luncheon Speech “Beneficial Relationships between Academia and Companies” Medical Information Technology A. Neil Pappalardo Chairman and CEO 3. Sharing Facilities and Expertise KAIST Nam Pyo Suh President Promoting International Sharing of Research Facilities and Expertise to Strengthen Research Outcomes Griffith University Ian O"Connor President Economic Benefits of Sharing Research Facilities and Expertise POSTECH Sunggi Baik President Economic Benefits of Sharing Facilities and Expertise: National NanoFab Center National NanoFab Center Hee Chul Lee President Communicating Science and Technology to Political Leaders Office of the President of KOREA Chan Mo Park Special Advisor to the President for Science and Technology Filling the Gap of University Resources Bandung Institute of Technology Djoko Santoso Rector 4. An Approach to Joint Research Ventures with NASA NASA Yvonne Pendleton Deputy Associate Center Director Benefits of International Joint Venture Research Projects University of Adelaide Martyn J. Evans Director, Community Engagement Benefits of International Joint Projects Mahidol University Sansanee Chaiyaroj Vice President International Joint Research Projects University of Iowa P. Barry Butler Dean, College of Engineering Joint Research: University of Technology Malaysia’s Experience at National and International Level University Technology of Malaysia Tan Sri Mohd Ghazali Vice-Chancellor Sharing Intellectual Property Rights Paris Institute of Technology Cyrille van Effenterre President Global Economic and Social Contribution of International Joint Project Cooperation Kyushu University Wataru Koterayama Vice President 5. Globalization through Interfacing with Existing Networking Technical University of Denmark Lars Pallesen Rector Establishing Global Science and Technology Networking National Cheng Kung University Da Hsuan Feng Senior Executive Vice President Establishing Global Science and Technology Networking University of Technology of Troyes Christian Lerminiaux President The Role of Global Science and Technology Network for Higher Education in the 21st Century Iowa State University Tom I-P. Shih Department Chair Regionalized or Globalized Science and Technology Networking Babes-Bolyai University Calin Baciu Dean, Faculty of Environmental Sciences Globalized Science and Technology Networking Harbin Institute of Technology Shuguo Wang President Connecting Regional Science and Technology Networks for the Global Networking Ritsumeikan University Sadao Kawamura Special Aide to the Chancellor How Can a Publisher Strengthen the Global Network of Universities? Elsevier Youngsuk Chi Vice Chairman
2008.09.18
View 19785
International Workshop on Flexible Displays Held on Aug. 21-22
An international workshop on flexible displays will be held at KAIST on Aug. 21-22. The workshop organized by Center for Advanced Flexible Display Convergence (CAFDC) in KAIST is designed to share ideas on the latest research developments and explore future trends in organic displays. Organic displays made from organic light-emitting diode (OLED) materials have recently made a real impact in consumer electronics and emerged as one of the most important technologies in the development of next-generation flexible displays. "The workshop is expected to provide an important opportunity to showcase latest technological developments using organic light-emitting diode and examine them from the perspectives of the next-generation flexible display," said Dr. Kyung-Cheol Choi, KAIST professor of electrical engineering and computer science who heads the CAFDC. The event will feature some of the world-renowned scholars in organic display including Prof. Stephen R. Forrest of the University of Michigan, Prof. Bernard Kippelen of Georgia Tech, and Prof. Takao Someya of the University of Tokyo, as theme presenters. It will also draw a slew of domestic scholars in the industry and academia.
2008.08.22
View 14115
Satellite Research Lab Named After Late Hyundai Chairman Chung
KAIST, Aug. 11, 2008 -- KAIST held a naming ceremony for a research lab which was named after the late Hyundai Asan Chairman Mong-Hun Chung on Monday (Aug. 11) at the KAIST Satellite Technology Research Center. During the ceremony, a seminar room was also named after Dr. Soon-dal Choi, President of Daeduk College, for his distinguished contributions to the development of Korean space science. Back in 1992, the late chairman Chung donated 3.4 billion won (US$3.4 million) to KAIST to build a satellite laboratory for the development of core space technologies and the nurturing of skilled manpower. The naming ceremony was held in commemoration of the 16th anniversary of the launch of Korea"s first small satellite "Uribyeol 1" on Aug. 11, 1992. Chung died in 2003. Dr. Soon-Dal Choi who laid the ground work for Korea"s space development program, served as the inaugural director general of the KAIST Satellite Technology Research Center, the birthplace of Korea"s artificial satellite. On hand at the naming ceremony were a slew of dignitaries including Jeong-Eun Hyun, Hyundai Group Chairwoman and wife of the late Chung; and about 10 chief executives of Hyundai Group companies; Seong-Hyo Park, Mayor of the Daejeon Metropolitan City; Ms. So-Yeon Lee, Korea"s first astronaut; and KAIST President Nam-Pyo Suh. President Suh noted that late Chairman Chung made great contributions to Korea"s artificial satellite development with his donation to the satellite laboratory. He said Dr. Choi is the father of the nation"s satellite program who provided the vision of space development in Korea at a time when Korea lagged behind in the artificial satellite technology.
2008.08.12
View 14688
Home-Grown Transparent Thin Film Transistor Developed
KAIST, Aug. 6, 2008 -- A KAIST research team led by Profs. Jae-Woo Park and Seung-Hyup Yoo of the Electrical Engineering Division has developed a home-grown technology to create transparent thin film transistor using titanium dioxide., university authorities said.The KAIST team made the technological advance in collaboration with the LCD Division of Samsung Electronics and the Techno Semichem Co., a local LCD equipment maker. Transparent thin film transistor continues to enjoy a wealth of popularity and intensive research interest since it is used in producing operating circuits including transparent display, active-matrix OLED (AMOLED) display and flexible display. The new technology is significant in that it is based on a titanium dioxide, the first such attempt in the world, while the technologies patented by the United States and Japan are based on ZnO. Researchers will continue to work on securing technological reliability and developing a technology to mass-produce in a large-scale chemical vapor deposition equipment for the next couple of years. "The development of technology to produce transparent thin film transistor will help Korean LCD makers reduce its dependence on foreign technologies, as well as maintain Korea"s status as a leader of the world"s display industry," said Prof. Park. KAIST has applied for local patent registration of the technology and the process is expected to complete by this October or November. International patents have been also applied for in the U.S., Japan and Europe. The new technology was introduced in the latest edition of the Electron Device Letters, a journal published by the Institute of Electrical and Electronics Engineers or IEEE, a New York-based international non-profit, professional organization for the advancement of technology related to electricity. It will be presented at the International Display Workshop 2008 on Dec. 5 in Niigata, Japan.
2008.08.07
View 14240
KAIST Professors Article Featured as Cover Thesis of Biotechnology Journal
An article authored by a research team of Prof. Sang-yup Lee at the Department of Chemical and Biomolecular Engineering and Dr. Jin-Hwan Park at the KAIST Institute for the BioCentury has been featured as the cover thesis of the August 2008 issue of Trends in Biotechnology. The paper, titled "General strategy for strain improvement by means of systems metabolic engineering," focuses on the application of systems biology for the development of strains and illustrates future prospects. Trends in Biotechnology, published by Cell Press, is one of the most prestigious review journals in the field. Jin-Hwan Park, the primary author of the research thesis, said that the KAIST team"s research work was expected to provide substantial help to researchers involved in biotechnology industry. The strategy has been established on the basis of the experiences gained in the actual microbial production process using the systems biology methods which his research team has recently worked on, Prof. Park said.
2008.07.24
View 13864
KAIST Professor Named International Research Grant Reviewer
Prof. Kwang-Hyun Cho of the Department of Bio and Brain Engineering, KAIST, was appointed as a research grant review committee member of the international Human Frontier Science Program (HFSP) for 2008-2009, university authorities reported. The HFSP is a funding agency that supports international collaboration in interdisciplinary, basic research in the life sciences. It was initiated in 1989 by G7 countries as the sole funding program for international researches in neuroscience and molecular biology. The HFSP now has a membership of 35 countries and Korea joined the program in 2004. Prof. Cho will be responsible for reviewing grant applications in the field of systems biology. Prof. Cho received B.S., M.S. and Ph.D. degrees in electrical engineering from KAIST in 1993, 1995, and 1998, respectively. He has been working as a director of the KAIST Institute for the BioCentury and KAIST"s Laboratory for Systems Biology and Bio-Inspired Engineering. He has been serving on editorial advisory boards of various international science journals, including Systems and Synthetic Biology (Springer, Netherlands, from 2006), BMC Systems Biology (BMC, London, U.K., from 2007) and Gene Regulation and Systems Biology (Libertas Academica, New Zealand, from 2007). He is a senior member of the Engineering in Medicine and Biology Society (EMBS) affiliated with the Institute of Electronics and Electrical Engineers (IEEE). His research interests cover the areas of systems science with bio-medical applications, especially systems biology and bio-inspired engineering based on molecular systems biology.
2008.07.18
View 17165
<<
첫번째페이지
<
이전 페이지
61
62
63
64
65
66
67
68
69
70
>
다음 페이지
>>
마지막 페이지 77