본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
first
by recently order
by view order
Artist in residence program at KAIST
A new and innovative program to support artists’ creative activities was launched by KAIST for the first time in Korean college history. The artist in residence program is an unusual collaboration between engineers and artists. Out of hundreds of applicants for the program, three writers were selected: a novelist, web-based cartoonist, and screen writer. In late October, they became the residents of KAIST. Housing and an office are provided for the writers in addition to a monthly cash stipend of 800,000 won for up to six months. A variety of programs will be available as well including a tour of laboratories to help the writers get ideas and inspiration. KAIST’s Vice President Jun-Ho Oh, the founder of the program, said, “Artists can freshen their imagination, and KAIST members can benefit from them to promote creative and innovative ideas through exchange and collaboration.”
2013.11.04
View 6238
Professor Sang-Ouk Kim Interviewed with Arirang TV on April 15, 2013
Professor Sang-Ouk Kim from the Department of Materials Science and Engineering made an appearance on April 15, 2013 at a morning show called “Korea Today” on Arirang TV, an English-language network based in Seoul, South Korea. Professor Kim introduced his research on the development of flexible semiconductor technology. If commercialized, Professor Kim added, the technology would expedite the common use of wearable computers including mobile devices as well as the development of bio-medical implanted and wireless telemetry bio-devices. To play the video, please click the link below (00:25:00): http://www.arirang.co.kr/Player/TV_Vod.asp?HL=X&code=VOD&vSeq=68872
2013.04.30
View 8471
The new era of personalized cancer diagnosis and treatment
Professor Tae-Young Yoon - Succeeded in observing carcinogenic protein at the molecular level - “Paved the way to customized cancer treatment through accurate analysis of carcinogenic protein” The joint KAIST research team of Professor Tae Young Yoon of the Department of Physics and Professor Won Do Huh of the Department of Biological Sciences have developed the technology to monitor characteristics of carcinogenic protein in cancer tissue – for the first time in the world. The technology makes it possible to analyse the mechanism of cancer development through a small amount of carcinogenic protein from a cancer patient. Therefore, a personalised approach to diagnosis and treatment using the knowledge of the specific mechanism of cancer development in the patient may be possible in the future. Until recently, modern medicine could only speculate on the cause of cancer through statistics. Although developed countries, such as the United States, are known to use a large sequencing technology that analyses the patient’s DNA, identification of the interactions between proteins responsible for causing cancer remained an unanswered question for a long time in medicine. Firstly, Professor Yoon’s research team has developed a fluorescent microscope that can observe even a single molecule. Then, the “Immunoprecipitation method”, a technology to extract a specific protein exploiting the high affinity between antigens and antibodies was developed. Using this technology and the microscope, “Real-Time Single Molecule co-Immunoprecipitation Method” was created. In this way, the team succeeded in observing the interactions between carcinogenic and other proteins at a molecular level, in real time. To validate the developed technology, the team investigated Ras, a carcinogenic protein; its mutation statistically is known to cause around 30% of cancers. The experimental results confirmed that 30-50% of Ras protein was expressed in mouse tumour and human cancer cells. In normal cells, less than 5% of Ras protein was expressed. Thus, the experiment showed that unusual increase in activation of Ras protein induces cancer. The increase in the ratio of active Ras protein can be inferred from existing research data but the measurement of specific numerical data has never been done before. The team suggested a new molecular level diagnosis technique of identifying the progress of cancer in patients through measuring the percentage of activated carcinogenic protein in cancer tissue. Professor Yoon Tae-young said, “This newly developed technology does not require a separate procedure of protein expression or refining, hence the existing proteins in real biological tissues or cancer cells can be observed directly.” He also said, “Since carcinogenic protein can be analyzed accurately, it has opened up the path to customized cancer treatment in the future.” “Since the observation is possible on a molecular level, the technology confers the advantage that researchers can carry out various examinations on a small sample of the cancer patient.” He added, “The clinical trial will start in December 2012 and in a few years customized cancer diagnosis and treatment will be possible.” Meanwhile, the research has been published in Nature Communications (February 19). Many researchers from various fields have participated, regardless of the differences in their speciality, and successfully produced interdisciplinary research. Professor Tae Young Yoon of the Department of Physics and Professors Dae Sik Lim and Won Do Huh of Biological Sciences at KAIST, and Professor Chang Bong Hyun of Computational Science of KIAS contributed to developing the technique. Figure 1: Schematic diagram of observed interactions at the molecular level in real time using fluorescent microscope. The carcinogenic protein from a mouse tumour is fixed on the microchip, and its molecular characteristics are observed live. Figure 2: Molecular interaction data using a molecular level fluorescent microscope. A signal in the form of spike is shown when two proteins combine. This is monitored live using an Electron Multiplying Charge Coupled Device (EMCCD). It shows signal results in bright dots. An organism has an immune system as a defence mechanism to foreign intruders. The immune system is activated when unwanted pathogens or foreign protein are in the body. Antibodies form in recognition of the specific antigen to protect itself. Organisms evolved to form antibodies with high specificity to a certain antigen. Antibodies only react to its complementary antigens. The field of molecular biology uses the affinity between antigens and antibodies to extract specific proteins; a technology called immunoprecipitation. Even in a mixture of many proteins, the protein sought can be extracted using antibodies. Thus immunoprecipitation is widely used to detect pathogens or to extract specific proteins. Technology co-IP is a well-known example that uses immunoprecipitation. The research on interactions between proteins uses co-IP in general. The basis of fixing the antigen on the antibody to extract antigen protein is the same as immunoprecipitation. Then, researchers inject and observe its reaction with the partner protein to observe the interactions and precipitate the antibodies. If the reaction occurs, the partner protein will be found with the antibodies in the precipitations. If not, then the partner protein will not be found. This shows that the two proteins interact. However, the traditional co-IP can be used to infer the interactions between the two proteins although the information of the dynamics on how the reaction occurs is lost. To overcome these shortcomings, the Real-Time Single Molecule co-IP Method enables observation on individual protein level in real time. Therefore, the significance of the new technique is in making observation of interactions more direct and quantitative. Additional Figure 1: Comparison between Conventional co-IP and Real-Time Single Molecule co-IP
2013.04.01
View 17188
Ligand Recognition Mechanism of Protein Identified
Professor Hak-Sung Kim -“Solved the 50 year old mystery of how protein recognises and binds to ligands” - Exciting potential for understanding life phenomena and the further development of highly effective therapeutic agent development KAIST’s Biological Science Department’s Professor Hak-Sung Kim, working in collaboration with Professor Sung-Chul Hong of Department of Physics, Seoul National University, has identified the mechanism of how the protein recognizes and binds to ligands within the human body. The research findings were published in the online edition of Nature Chemical Biology (March 18), which is the most prestigious journal in the field of life science. Since the research identified the mechanism, of which protein recognises and binds to ligands, it will take an essential role in understanding complex life phenomenon by understanding regulatory function of protein. Also, ligand recognition of proteins is closely related to the cause of various diseases. Therefore the research team hopes to contribute to the development of highly effective treatments. Ligands, well-known examples include nucleic acid and proteins, form the structure of an organism or are essential constituents with special functions such as information signalling. In particular, the most important role of protein is recognising and binding to a particular ligand and hence regulating and maintaining life phenomena. The abnormal occurrence of an error in recognition of ligands may lead to various diseases. The research team focused on the repetition of change in protein structure from the most stable “open form” to a relatively unstable “partially closed form”. Professor Kim’s team analysed the change in protein structure when binding to a ligand on a molecular level in real time to explain the ligand recognition mechanism. The research findings showed that ligands prefer the most stable protein structure. The team was the first in the world to identify that ligands alter protein structure to the most stable, the lowest energy level, when it binds to the protein. In addition, the team found that ligands bind to unstable partially-closed forms to change protein structure. The existing models to explain ligand recognition mechanism of protein are “Induced Custom Model”, which involves change in protein structure in binding to ligands, and the “Structure Selection Model”, which argues that ligands select and recognise only the best protein structure out of many. The academic world considers that the team’s research findings have perfectly proved the models through experiments for the first time in the world. Professor Kim explained, “In the presence of ligands, there exists a phenomenon where the speed of altering protein structure is changed. This phenomenon is analysed on a molecular level to prove ligand recognition mechanism of protein for the first time”. He also said, “The 50-year old mystery, that existed only as a hypothesis on biology textbooks and was thought never to be solved, has been confirmed through experiments for the first time.” Figure 1: Proteins, with open and partially open form, recognising and binding to ligands. Figure 2: Ligands temporarily bind to a stable protein structure, open form, which changes into the most stable structure, closed form. In addition, binding to partially closed form also changes protein structure to closed form.
2013.04.01
View 10372
KAIST and Saudi Aramco agreed to establish a joint CO2 research center in Korea
The Korea Advanced Institute of Science and Technology (KAIST) and Saudi Aramco, a global energy and petrochemicals enterprise, signed a memorandum of understanding (MOU) on January 6, 2013 in Dhahran, Saudi Arabia and pledged to jointly collaborate in research and development of innovative technologies and solutions to address the world"s energy challenges. Under the MOU, the two entities agreed to establish a research center, Saudi Aramco-KAIST CO2 Research Center, near KAIST"s main campus in Daejeon, Korea. The research center, to be jointly managed by KAIST and Saudi Aramco, will foster and facilitate research collaborations in areas such as tackling carbon dioxide (CO2) emissions by removal or capture of CO2, conversing CO2 into useful products, developing efficiency improvements in energy production, sharing carbon management technologies, establishing exchange programs, and conducting joint projects. According to Saudi Aramco, the company"s collaboration with KAIST is the first partnership established in Asia. Khalid A. Al-Falih, President and CEO of Saudi Aramco, said, "The CO2 Research Center represents a major step in Saudi Aramco"s research and technology strategy to partner with top global institutions to help address and find sustainable solutions to the world’s energy challenge both domestically and internationally."
2013.03.19
View 9155
Midam Scholarship Society Receives Minister of Education, Science, and Technology Prize for Education Donation
Midam Scholarship Society, consisting of KAIST students, has been awarded the First Korea Education Donation Grand Prize from the Ministry of Education, Science and Technology. The Education Donation Prize has been created in order to encourage those university clubs that have been increasing awareness of education donation and at the same time donating educational services themselves. Midam Scholarship Society was established by KAIST students in 2009 to provide educational services to those students from low income families. Currently over 200 students from six different universities (KAIST, UNIST, Pusan University, Chonnam University, Kyungpook National University, Kumoh Engineering University) are involved in the Midam Scholarship Society. Approximately 70 students participate in the KAIST Midam Scholarship Society. The classes take place in the classrooms every week for three hours over a period of three months. The classes are offered to over 1,000 high school students in and near DaeJeon.
2012.12.21
View 8750
Distinguished Professor Lee Sang Yeop Appointed as Fellow of the American Institute of Chemical Engineers
Professor Lee Sang Yeop (Dean of the Department of Biological Sciences) has become the first Korea Scientist to be appointed as the Fellow of the American Institute of Chemical Engineers. The American Institute of Chemical Engineers was founded in 1908 and boasts a 100 year history. It is composed of 43,000 members over 90 countries and is the largest international Academic Institute in the field of Chemical Engineering. The Institute appoints Fellows after a rigorous procedure of recommendation and evaluation and Professor Lee is the first Korean to become a Fellow. Professor Lee’s expertise is the field of Metabolic Engineering and successfully applied the system design method and optimization strategy of chemical engineering to biological systems thereby developing numerous core technologies for the biology based chemical industries. Professor Lee is the founder of the System Metabolic Engineering and enabled the medical application of microorganisms by manipulating the metabolic pathways on a systems level in addition to making great progress in synthesizing various oil originated chemical materials using biology based, environmentally friends methods. Professor Lee received the Marvin J. Johnson Award, Charles Thom Award, and has been appointed by the first Chairman of the Biotech Global Agenda Counsel of the World Economic Forum.
2012.09.22
View 8328
Professor Yoon Dong Ki becomes first Korean to Receive the Michi Nakata Prize
Professor Yoon Dong Ki (Graduate School of Nano Science and Technology) became the first Korean to receive the Michi Nakata Prize from the International Liquid Crystal Society. The Awards Ceremony was held on the 23rd of August in Mainz, Germany in the 24th Annual International Liquid Crystal Conference. The Michi Nakata Prize was initiated in 2008 and is rewarded every two years to a young scientist that made a ground breaking discovery or experimental result in the field of liquid crystal. Professor Yoon is the first Korean recipient of the Michi Nakata Prize. Professor Yoon is the founder of the patterning field that utilizes the defect structure formed by smectic displays. He succeeded in large scale patterning complex chiral nano structures that make up bent-core molecules. Professor Yoon’s experimental accomplishment was published in the Advanced Materials magazine and the Proc. Natl. Acad. Sci. U.S.A. and also as the cover dissertation of Liquid Crystals magazine. Professor Yoon is currently working on Three Dimensional Nano Patterning of Supermolecular Liquid Crystal and is part of the World Class University organization.
2012.09.11
View 11266
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 14192
New concept 'mole game' robot developed
A new game robot concept developed by KAIST researchers came in first place at a world-renowned virtual reality exhibition, despite being the first ever entry by a Korean team. Professor Lee Woohun’s team from the Department of Industrial Design at KAIST won the first-place award of ‘Gran Prix du Jury’ at the famous virtual reality exhibition, Laval Virtual 2012, which was held between March 28th and April 1st, with the mole game robot, ‘MoleBot’. MoleBot can be enjoyed in a completely physical environment unlike other virtual reality games and allows interaction between the virtual world and reality. Such imaginative interaction attracted numerous spectators during the exhibition. The MoleBot table consists of approximately 15,000 small cubes, and as the object inside the table moves, the cubes slide as if a mole is inside. By using a joystick, users can enjoy physical interaction with the table and a wide range of games. The MoleBot can also be operated with hand gestures using ‘Kinect’, a motion sensing input device developed by Microsoft, making it possible to enjoy games as if playing with a pet. Professor Lee’s team came up with the project from a simple idea: ‘What if moles lived inside the table?’ The team first created a table that would hold and allow the movement of the cubes, and then placed a plastic mold underneath it with a layer of spandex in between to lessen the friction, allowing smooth and lifelike movement. The mold contains magnets that allow the accurate delivery of mechanical movement. After two years of continued additional research, MoleBot was released to the world. In the acceptance speech, Professor Lee said, ‘It is rare for a design team to win first place in an engineering exhibition’ and that ‘to achieve such a feat, the MoleBot’s technological creativity and artistic completeness became one’. Professor Lee also said that ‘this concept of creating an interactive world on a table could potentially become a new game interface’ and that he would research on applying this MoleBot technology to different fields such as human-computer interaction, architecture, interior, and clothing. Laval Virtual is a world-renowned exhibition that displays cutting edge technologies in the field of virtual reality. This year was the 14th exhibit, and over 10,000 people participated in it. The exhibition gives out 12 awards, one per field, and Professor Lee’s team won the highest award.
2012.05.07
View 10724
Annual Future Knowledge Service International Symposium
Knowledge Service Research preparing for the future knowledge based society has been academically publicized. The First Annual Future Knowledge Service International Symposium was held in COEX Grand Ball Room Hall by KAIST’s department of Knowledge Service Engineering. Knowledge Service Engineering is a core component to the future knowledge based society and is the convergent result of decision making, recognition sciences, artificial intelligence, IT, and other knowledge management technologies from each of the industries. Therefore Knowledge Service Engineering will innovate the cooperation and communication between humans and machines thereby forming the center point of the development of knowledge society. The symposium was attended by 9 important figures from domestic and foreign academia, government representative, and key figures from industries. The symposium was based around debates concerning the role of the Knowledge Service Engineering in the future knowledge based society. The key note speaker was Chairman of Korea Science and Technology Information Research Institute Park Young Suh and the theme of the speech was ‘Change in Information Environment and Knowledge Service’. Director of National IT Industry Promotion Agency Kang Hyun Gu gave a lecture on the topic of ‘Important Knowledge Service Policies by National IT Industry Promotion Agency’. And from industry experts, Bradley K. Jensen (Manager of Microsoft Industry-Education Cooperation), Lee Kang Yoon (Research Director at IBM), Choi Yoon Shik (Head of Asia Future Human Resource Institute) proposed a direction for research and gave their account on recent trends of knowledge service from the perspective of onsite experience. Academic experts like Fred D. Davis (Professor at State University of Arkansas), Jussi Kantola (Professor at KAIST), Kim Young Gul (Professor at KAIST Management University), Yoon Wan Chul (Professor at KAIST Knowledge Service Engineering) gave the recent trends in academic research. The symposium was held in 3 sessions: ▲Policy of Korean Government ▲Academic Research Trend ▲Recent Trend and Application. More information can be found at http://kss.kaist.ac.kr
2012.01.31
View 8460
KAIST Ph.D Mihyun Jang Employed as Professor at Technische Universitat Graz
A Ph.D purely from Korea has been employed as a professor at Technische Universitat Graz. This is the news of Prof.Mihyun Kang (39) who has graduated from KAIST’s mathematics department. Prof.Kang has transferred on January 2012. KAIST explained that “it’s the first time for a mathematics Ph.D from Korea has been employed abroad.” Technische Universitat Graz of Australia is ranked the top third university within the country. It is a global university with 1,700 students from 78 different countries out of its 11,000 students. Prof. Kang researched mainly theories of combination including random graphing theories, analytical combination theories, and probabilistic combination theories. She has been employed as a lifetime professor through open recruitment where she competed with others through academic debates and interviews. Technische Universitat Graz valued Prof. Kang’s research highly made her the department head of the ‘Optimization and Discrete Mathematics department’ to create an environment where she could continuously research. Prof. Kang graduated from Jeju university majoring math educations and did her graduate studies in KAIST. She is a purely ‘Korean’ Ph.D. After her studies, she worked for Germany’s Humboldt University and Freie Universitat Berlin. In 2007, she was able to be employed as a professor in Germany, and in 2008, she was chosen as a Heisenberg fellow. Prof. Kang who had her research achievements recognized in Germany and Austria was also offered seat as professor in Ludwig Masximilan University of Germany and Alpenadria University in Austria, but chose Technische Universitat Graz.
2012.01.31
View 10249
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7