본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
MIT
by recently order
by view order
World's Largest Web Conference To Be Held in Korea
The 2014 International World Wide Web Conference (WWW 2014), the world’s most prestigious academic conference in the field of web, will be held for the first time in Korea. The conference is to be last for five days at Seoul COEX, from 7th to 11th April. International World Wide Web Conference covers a wide range of web-related areas, including technologies, research papers, services and more. Since the first conference in 1994 in Switzerland, it has been held in various parts of North America, Europe, South America and Asia, attracting more than 1000 experts in the field. The 23rd International World Wide Web Conference is managed by the International World Wide Web Conferences Steering Committee (IW3C2) and co-hosted by KAIST and National Agency for Technology and Standards, as well as sponsored by Korea Information Science Society and the World Wide Web Consortium (W3C). Keynote speakers for this year’s conference include inventor of the World Wide Web, Sir Tim Berners-Lee, senior vice president of Microsoft, Dr. Qi Lu, and Carnegie Mellon University’s Prof. Christos Faloutsos, as well as Samsung Electronic’s vice president Jong-Deok Choi. In addition to WWW 2014, BigData Innovators Gathering (BIG 2014) and Web for Access (W4A 2014) is also to be held in joint. KAIST Computer Sciences Department’s Prof. Jinwan Jeong, in charge of directing this year’s conference, said “From one-sided 1st generation web to two-way 2nd generation web, such as blogs, and then recently to the 3rd generation web, which include social networks and semantic webs, the web technologies has grown vastly over the past 25 years. WWW 2014 will be the opportunity for Korea to discuss with the world about the informatization and future of the web.” Pre-registration for WWW 2014 can be applied at the official webpage for WWW 2014 (http://www2014.kr) before 17th February.
2014.02.14
View 9366
Technology Developed to Control Light Scattering Using Holography
Published on May 29th Nature Scientific Reports online Recently, a popular article demonstrated that an opaque glass becomes transparent as transparent tape is applied to the glass. The scientific principle is that light is less scattered as the rough surface of the opaque glass is filled by transparent tape, thereby making things behind the opaque glass look clearer. Professor Yong-Keun Park from KAIST’s Department of Physics, in a joint research with MIT Spectroscopy Lab, has developed a technology to easily control light scattering using holography. Their results are published on Nature’s Scientific Reports May 29th online edition. This technology allows us to see things behind visual obstructions such as cloud and smoke, or even human skin that is highly scattering, optically thick materials. The research team applied the holography technology that records both the direction and intensity of light, and controlled light scattering of obstacles lied between an observer and a target image. The team was able to retrieve the original image by recording the information of scattered light and reflecting the light precisely to the other side.This phenomenon is known as “phase conjugation” in physics. Professor Park’s team applied phase conjugation and digital holography to observe two-dimensional image behind a highly scattering wall. “This technology will be utilized in many fields of physics, optics, nanotechnology, medical science, and even military science,” said Professor Park. “This is different from what is commonly known as penetrating camera or invisible clothes.” He nevertheless drew the line at over-interpreting the technology, “Currently, the significance is on the development of the technology itself that allows us to accurately control the scattering of light." Figure I. Observed Images Figure II. Light Scattering Control
2013.07.19
View 7820
Professor Hwang Gyu Young Elected as Chairman of IEEE TCDE.
Professor Hwang Gyu Young (Department of Computer Science) was elected as the Chairman of IEEE (Institute of Electrical and Electronics Engineers) TCDE (Technical Committee on Data Engineering). IEEE TCDE is one of the three academic organizations (including VLDB Endowment, ACM SIGMOD) and Professor Hwang is the first to be elected as Chairman from the Asia-Pacific region. Professor Hwang’s tenure begins on New Year’s Day for two years. IEEE TCDE holds the world’s most prestigious academic competition IEEE ICDE and hosts the Working Group and publishes the IEEE Data Engineering Bulletin.
2012.12.21
View 8563
The control of light at the nano-level
Professor Min Bumki Professor Min Bumki’s research team from the Department of Mechanical Engineering at KAIST have successfully gained control of the transmittance of light in optical devices using graphene* and artificial 2-dimensional metamaterials**. * Graphene : a thin membrane composed of pure carbon, with atoms arranged in a regular hexagonal pattern ** Metamaterials : artificial materials engineered to have properties that may not be found in nature The research results were published in the recent online edition (September 30th) of Nature Materials, a sister journal of the world renowned Nature journal, under the title ‘Terahertz waves with gate-controlled active graphene metamaterials’ Since the discovery of graphene in 2004 by Professors Novoselov and Geim from the University of Manchester (2010 Nobel Prize winners in Physics), it has been dubbed “the dream material” because of its outstanding physical properties. Graphene has been especially praised for its ability to absorb approximately 2.3% of near infrared and visible rays due to its characteristic electron structure. This property allows graphene to be used as a transparent electrode, which is a vital electrical component used in touch screens and solar batteries. However, graphene’s optical transmittance was largely ignored by researchers due to its limited control using electrical methods and its small optical modulation in data transfer. Professor Min’s team combined 0.34 nanometer-thick graphene with metamaterials to allow a more effective control of light transmittance and greater optical modulation. This graphene metamaterial can be integrated in to a thin and flexible macromolecule substrate which allows the control of transmittance using electric signals. This research experimentally showed that graphene metamaterials can not only effective control optical transmittance, but can also be used in graphene optical memory devices using electrical hysteresis. Professor Min said that “this research allows the effective control of light at the nanometer level” and that “this research will help in the development of microscopic optical modulators or memory disks”. figure 1. The working drawing of graphene metamaterials figure 2. Conceptual diagram (Left) and microscopic photo (right) of graphene metamaterials
2012.11.23
View 9907
Undergraduate Research Program, Putting Wings on Undergraduate"s Dreams
KAIST held the 2011 URP Research Result Presentation in the Creative Learning Center on the 17th. Four students Jae Gyung Seo, Tran An Tu, Gun Sik Ahn, and Gyung Ryul Bong have been chosen as the grand prize winners. The grand prize winners receive 3.5million won to allow them to participate in an international academic conference. The URP program is the first of its kind in Korea and has been benchmarked from MIT’s UROP(Undergraduate Research Opportunity Program). The school selects 60 individual and 20 team research projects for undergraduates twice a year and provides mentorship as well as financial support. Students signing up for the URP are to submit research plans and are then chosen through looking at these documents. Students receive 6 months of research funds and are to work under a professor and TA in groups of 2 to 3 or individually. The URP program which is funded by the Ministry of Science and Technology has settled in successfully and has been expanded to the entire country. The head of the R&D team, Yong Jae Sung, stated, “The number of research plans have been 154 in 2008, 189 in 2009, 220 and 251 respectively in 2010 and 2011. It’s continuously rising. And over 80% of responses on satisfaction surveys have replied that students were satisfied. It is very popular among undergraduates.“ Student Sang Yeon Cho has also said, “I was able to research on everything that I wanted under funding of the school and the guidance of renowned professors thanks to the URP program.” To Seul Gi Lee, a graduate student for the electrical engineering department who has developed the wearable sleeping pattern analysis system, URP is an especially special program. She said, “I successfully researched in the wearable health care field as my URP research material in 2006 when I was in my junior year. I made second place. After this, I have continued my research in this field on SoC(System on Chip) for wearable healthcare in graduate school and will be receiving my doctorate degree on the 24h.” Doctor Seul Gi Lee has been recognized in the field of wearable healthcare for her research and has been hired as a researcher in the Holst Centre which is a national research center funded by the Netherlands’ government. She will continue to research on measuring and analyzing biological readings.
2012.04.04
View 9739
Education 3.0: Student Centered, Innovative Education
Education 3.0 is a teaching method development program aiming to raise the quality and efficiency of education through innovating the existing one-sided professor-student lecture approach. Students will be able to study regardless of the time and space restrictions thanks to the IT-based curriculum, and will be able to conduct independent studies. Also, the lectures and contents will become internationalized through sharing them with other advanced universities. The lectures will take on an integrated format where students and professors will be discussing things together. KAIST will be testing this program on the three courses of calculus, general chemistry, and freshmen design, and will further expand the use of this program. Participants have been chosen from the freshmen this year, and 201 students have signed up for calculus and 163 for general chemistry, showing great enthusiasm on the new program. 48 students have been selected for each course out of the volunteers. Class will take on both the form of an online and offline lecture. Students must first log on to the KLMS(KAIST Learning Management System) and then review the lecture video, slides, multimedia, online lab, outside video resources, and other digital content prepared by the professors, and learn according to one’s own pace. Questions can be asked online, and assignments are also to be submitted online. The offline lectures will take place at least once a week, and students are to discuss and question the material together and form groups to solve problems on their own. The professor and TAs are to interact with the students in the method seen as appropriate for the course. For this Education 3.0 program, KAIST has installed a lecture system, video tracking system, A/V system, circular desks, glass boards, and other state-of-the-art facilities into a classroom in the Creative Learning Building. The KLMS(KAIST Learning Management System) which will serve as a learning platform has also been developed. The reason why KAIST has been spending so much resources on education innovation has been that KAIST can not produce the talented personnel required by the future society with the current ‘one-way lecture’. Tae-Eog Lee, the head of the Education 3.0 program said, “The current lecture method targeted for mass education can not created the leaders for the future society and companies. The lecture and education paradigm must shift in the science and engineering fields for the production of talented individuals with problem-solving abilities and creativity.” He also stated, “The KAIST education 3.0 program is a student focused education method where the students who are the receivers of the education are the focus of the education, as well as a future-oriented method where the lectures are to become discussion-focused.” While all the top notch universities are conducting education innovations, MIT has proposed an MITX program where it even gives students certificates for some classes just for listening to classes online and passing the test. MIT is being evaluated as the leader of higher level education since through this everyone around the world will receive the chance to receive advanced education.
2012.04.04
View 8860
Distinguished Professor Sang-Yeop Lee gave keynote speech in '2011 China Bio-Refinery Summit'
Distinguished Professor Sang-Yeop Lee gave keynote speech in ‘2011 China Bio-Refinery Summit’ held in Chang’an, Beijing Professor Lee gave a lecture on the vitalization strategy of ‘Bio-Refinery’, which is ‘A bio-based chemical industry to replace fossil fuel-based petro chemistry. Professor Lee, insisted that for the successful construction of ‘Bio-Refinery’, there should be innovation in all value chain of biomass; biomass producer, bio-refinery business, consumer, government, etc. ▲Securement and distribution of Biomass ▲Development of strain and process for fermentation separation to effectively change biomass into chemical substance and fuel ▲Optimization of transportation and marketing. During this summit, high-ranking government officials in politics and economics, executives of multicultural and Chinese business participated. From Korea, Do-Young Seung of Manager of technology research of GS and Hang-Deok Roh of laboratory chief of SK Chemical participated as panelist. World Economy Forum, the gathering of leaders and experts in politics, economics, and policy created a ‘Global Agenda Council’ to find solutions on the issue of ‘sustainable growth of environment of the Earth and humanity’. Professor Lee is the chairperson of ‘Emerging Technologies Global Agenda Council (GAC)’ of Word Economy Forum. Professor Lee, founder of ‘Systems Metabolic Engineering’, has made remarkable achievements world-wide, including a technology that manipulates metabolic circuit of microorganisms to purify various crude-originated chemical substances into environmentally friendly substances. Currently, he is working on Systems biology research business in Ministry of Education, Science and Technology, Global Frontier Biomass business, Global Frontier Intelligent Bio-system construction and composition, to make progress in metabolic engineering which is essential for the bio-chemical industry.
2012.03.06
View 10872
Op-Ed by MIT President, Manufacturing a Recovery, New York Times, August 29, 2011
New York Times carried an opinion piece of MIT President, Susan Hockfield. Dr. Hockfield put emphasis on the importance of recovering manufacturing to revive the US economy and suggested investments in the development of high technology and “tight integration of design production” through “networks of innovation, lab research to new production processes, and business models.” For the op-ed piece, please go to http://www.nytimes.com/2011/08/30/opinion/manufacturing-a-recovery.html?_r=2.
2011.08.31
View 9626
From Pencil Lead to Batteries: the Unlimited Transformation of Carbon
Those materials, like lead or diamond, made completely up of Carbon are being used in numerous ways as materials or parts. Especially with the discovery of carbon nanotubes, graphemes, and other carbon based materials in nanoscale, the carbon based materials are receiving a lot of interest in both fields of research and industry. The carbon nanotubes and graphemes are considered as the ‘dream material’ and have a structure of a cross section of a bee hive. Such structure allows the material to have strength higher than that of a diamond and still be able to bend, be transparent and also conduct electricity. However the problem up till now was that these carbon structures appeared in layers and in bunches and were therefore hard to separate to individual layers or tubes. Professor Kim Sang Wook’s research team developed the technology that can assemble the grapheme and carbon nanotubes in a three dimensional manner. The team was able to assemble the grapheme ad carbon nanotubes in an entirely new three dimensional structure. In addition, the team was able to efficiently extract single layered grapheme from cheap pencil lead. Professor Kim is scheduled to give a guest lecture in the “Materials Research Society” in San Francisco and the paper was published in ‘Advanced Functional Materials’ magazine as an ‘Invited Feature Article’.
2011.05.11
View 10161
KAIST 40th Anniversary Planning Student Committee Formed
Undergraduate students of KAIST formed the 40th Anniversary Planning Student Committee in order to introduce the students" perspective to the upcoming festivities and programs. The Student Committee has several key aims: 1) The Committee aims at funding and cooperating with other clubs and club initiated events around KAIST and coordinating them to take on a 40th Anniversary theme and plan events on a grander scale than before. 2) Instil a greater sense of togetherness and pride for the KAIST institute and the various contributions and achievements it has made to both the domestic and international society. 3) Create a supporters group to, again, advertise the importance of KAIST"s achievements in the past 40 years and the significance of KAIST turning 40. The Student Committee is run under the Student Government and is led by Kang Soo Young and Jin Soo Geul.
2011.03.25
View 7635
KAIST paves the way to commercialize flexible display screens
Source: IDTechEX, Feb. 28, 2011 KAIST paves the way to commercialize flexible display screens 28 Feb 2011 Transparent plastic and glass cloths, which have a limited thermal expansion needed for the production of flexible display screens and solar power cells, were developed by researchers at KAIST (Korea Advance Institute of Science & Technology). The research, led by KAIST"s Professor Byoung-Soo Bae, was funded by the Engineering Research Center under the initiative of the Ministry of Education, Science and Technology and the National Research Foundation. The research result was printed as the cover paper of "Advanced Materials". Professor Bae"s team developed a hybrid material with the same properties as fiber glass. With the material, they created a transparent, plastic film sheet resistant to heat. Transparent plastic film sheets were used by researchers all over the world to develop devices such as flexible displays or solar power cells that can be fit into various living spaces. However, plastic films are heat sensitive and tend to expand as temperature increases, thereby making it difficult to produce displays or solar power cells. The new transparent, plastic film screen shows that heat expansion index (13ppm/oC) similar to that of glass fiber (9ppm/oC) due to the presence of glass fibers; its heat resistance allows to be used for displays and solar power cells over 250oC. Professor Bae"s team succeeded in producing a flexible thin plastic film available for use in LCD or AMOLED screens and thin solar power cells. Professor Bae commented, "Not only the newly developed plastic film has superior qualities, compared to the old models, but also it is cheap to produce, potentially bringing forward the day when flexible displays and solar panels become commonplace. With the cooperation of various industries, research institutes and universities, we will strive to improve the existing design and develop it further." http://www.printedelectronicsworld.com/articles/kaist_paves_the_way_to_commercialize_flexible_display_screens_00003144.asp?sessionid=1
2011.03.01
View 12364
KAIST has developed a powerless and wireless keyboard that can be folded and easily carried around.
The KAIST Institute for Information Technology Convergence (KIITC) has developed the next generation keyboard that does not need power and wires. The powerless/wireless keyboard developed by KIITC is flexible, foldable, portable, and compact, making the possession of keyboard easier and more convenient. The idea of this technology was derived from "Idea Contest for Future Device" opened by KIITC in 2007, and Future Device Team (Team Leader: Dr. Sungkwan Jung) of KIITC embodied the idea and developed full-flexible powerless/wireless keyboard by using the passive Radio Frequency Identification (RFID) technology to support the convenient data input for daily mobile life. Through the technology, KAIST expects to realize ubiquitous computing and communication environment, open a new market for foldable keyboards, and secure the competitiveness of mobile devices industries in the world market. KIITC has also successfully transferred the technology of powerless/wireless keyboard to Hanyang Demitech for commercialization.
2010.08.12
View 11554
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5