본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
"Our addiction to oil is the major cause of global warming."
Joongang Daily, one of the major newspapers in Korea, interviewed Professor John Spengler from Harvard University, an internationally renowned scholar in environmental science, who visited Korea for a conference. He mentioned KAIST’s online electric vehicle (OLEV) during the course of interview. The paper interviewed him on a wide range of environmental issues, and below is a translation of the original Korean article. For the Korean article, please download the attached picture file. “Our addiction to oil is the major cause of global warming.” Interview with Professor John Spengler from Harvard University—he is an internationally renowned scholar in environmental science. By Chan-Soo Kang, Joongang Daily September 3, 2010 “The oil spill in the Gulf of Mexico by British Petroleum (BP), a multinational oil company, took place against the backdrop of our addition to oil,” said Professor John Spengler (66 years old) from Harvard University on September 2. “The fact that we are addicted to oil means we are obsessed with mobility as well. Throughout the history of mankind, there has never been the time when we move from one place to another as frequently as today and are dependent on fossil fuels as much as today.” Visiting Korea to attend a conference co-sponsored by International Society of Exposure Science (ISES) and International Society of Environmental Epidemiology (ISEE) that was held at Coex in Seoul from August 28 to September 2, he gave his speech at plenary talks of the conference on the a topic titled, “Our health is our planet.” Professor Spengler is an internationally well-known expert in the research of indoor air pollution and environmental exposures of chemical compounds. At the conference, he mostly talked about an ecological catastrophe resulted from the explosion of an oil rig operated by BP in the Gulf of Mexico. He pointed out, “It’s been a problem that oil companies are more willing to take risks of exploring dangerous places to obtain oil as the demand for oil has increased. Excessive oil consumption cannot help but lead to global warming.” “Particularly,” he said, “the unusual climate events, frequently happening in recent years, including severe heat wave and drought in Russia this summer, are somewhat expected to occur by weather forecast models. However, it seems that the extreme weather patterns are taking place more frequently, and accordingly, we are facing more severe effects of weather conditions.” Professor Spengler emphasized that “We should change our diet and lifestyle to reduce the stress put on our ecosystem, such as getting protein from vegetables rather than from fish or meat and having a habit of curtailing energy consumption.” “While I’m here, I have a chance to see an online electric vehicle (OLEV) developed by KAIST. If this technology is applied, we can reduce environmental problems as such,” he assessed the development of OLEV. He also said that “the State of Utah in the US has expressed its intention to adopt the OLEV technology.” With regard to his research focus on indoor air pollution, Professor Spengler said, “We are having problems like “New House Syndrome” because we try to build a house with cheap materials. Governments should set a standard and control pollutants released from building materials in order to reduce risks resulted from indoor air pollution.” He argued, “In the early 1990s, when the Irish government introduced an enhanced regulation of air pollution in Dublin, the mortality rate of the city in that winter dropped dramatically.” “It’s been proven that as fine particle pollution gets worse, more patients with cardiovascular diseases die. Therefore, we need to make efforts to reduce the air pollution.” “Compared with other nations,” Professor Spengler estimated Korea as a nation that “definitely improved its air quality by introducing buses with a Compressed Natural Gas (CNG) engine to its public transportation system.” (End)
2010.09.06
View 10763
Science News Issued on September 11, 2010: A matter of solidity
Science News, a bi-weekly news magazine of the Society for Science & the Public, published an extensive article on the issue of “supersolidity” discovered in helium-4. Professor Eun-Seong Kim of the Physics Department, KAIST, is one of the scientists who discovered the phenomenon through an experiment of solid helium using a device called a torsional oscillator. For the entire article, please click the link of http://www.sciencenews.org/view/feature/id/62642/title/A_matter_of_solidity.
2010.09.02
View 10108
Former Minister of Information & Communications Dae-Je Jin donated to KAIST.
From left to right: Yong-Hoo Lee, Dean of Information Science & Technology College, KAIST; Gang-Seok Lee, Vice President of Skylake Incuvest, Inc.; Dae-Je Jin, Former Minister of Information & Communications; Byung-Kyu Choi, Provost of KAIST; and Dae-Joon Joo, Vice President of Planning & Budget, KAIST. Mr. Dae-Je Jin, who had served as the Minister of Information & Communications, South Korea, gave away about 100,000 USD to KAIST and hoped that his donation would be used for the development of information and technology industry in the nation. Mr. Jin, widely known as one of the reputable business leaders in the IT industry, was also once the president of Samsung Electronics, a leading global supplier of electronic products and goods. Currently, he runs a private equity investor called, Skylake Incuvest, Inc., which invests and incubates innovative information, communications, and technology companies. “The real growth engine for our nation to become an economic powerhouse on a global stage has been the highly trained people who shore up our industry. Universities including KAIST have played an excellent role in providing our nation with such outstanding researchers and engineers. I will continue to support for KAIST"s mission as a leading research university in science and technology in Korea and the world,” said Mr. Jin. KAIST said that his donation would be used for the support of its IT researches.
2010.08.27
View 10227
Nanowire crystal transformation method was newly developed by a KAIST research team.
Figure 1 Schematic illustration of NW crystal transformation process. FeSi is converted to Fe3Si by high-temperature thermal annealing in diluted O2 condition and subsequent wet etching by 5% HF. Figure 2 Low-resolution TEM images of FeSi; Fe3Si@SiO2 core—shell; Fe3Si NW after shell-etching; and Scale bars are 20 nm Professor Bongsoo Kim of the Department of Chemistry, KAIST, and his research team succeeded to fabricate Heusler alloy Fe3Si nanowires by a diffusion-driven crystal structure transformation method from paramagnetic FeSi nanowires. This methodology is also applied to Co2Si nanowires in order to obtain metal-rich nanowires (Co) as another evidence of the structural transformation process. The newly developed nanowire crystal transformation method, Professor Kim said, would be valuable as a general method to fabricate metal-rich silicide nanowires that are otherwise difficult to synthesize. Metal silicide nanowires are potentially useful in a wide array of fields including nao-optics, information technology, biosensors, and medicine. Chemical synthesis of these nanowires, however, is challenging due to the complex phase behavior of silicides. The metal silicide nanowires are grown on a silicon substrate covered with a thin layer of silicon oxide via a simple chemical vapor deposition (CVD) process using single or multiple source precursors. Alternatively, the nanowires can be grown on the thin silicon oxide film via a chemical vapor transport (CVT) process using solid metal silicide precursors. The CVT-based method has been highly effective for the syntheses of metal silicide NWs, but changing the composition of metal silicide NWs in a wider range, especially achieving a composition of a metal to silicon, has been quite difficult. Thus, developing efficient and reliable synthetic methods to adjust flexibly the elemental compositions in metal silicide NWs can be valuable for the fabrication of practical spintronic and neonelectronic devices. Professor Kim expliained, “The key concept underlying this work is metal-enrichment of metal silicide NWs by thermal diffusion. This conversion method could prove highly valuable, since novel metal-rich silicide NWs that are difficult to synthesize but possess interesting physical properties can be fabricated from other metal silicide NWs.” The research result was published in Nanao Letters, a leading peer-reviewed journal, and posted online in early August 2010.
2010.08.25
View 10360
South Koreans Develop High-Performance Software Router.
HPC Wire, covering news on computing software, hardware, networking, storage, tools and applications, published an article on the development of high-performance router by a KAIST research team. The research team consisted of the Departments of Computer Science and Electrical Engineering, KAIST, presented PacketShader, a high-performance software router framework for general packet processing with Graphics Processing Unit (GPU) acceleration. PacketShader, the research team said, that exploits the massively-parallel processing power of GPU to address the CPU bottleneck in current software routers. For the article, please click the link: http://www.hpcwire.com/news/South-Koreans-Develop-High-Performance-Software-Router-101401434.html
2010.08.25
View 9582
KAIST hosts training program for Indian MBA students
The College of Business of KAIST held an academic exchange program, inviting MBA students from the Indian Institute of Management. 65 students from India visited Korea and would have a two-week training course including field trips to various companies in the nation. For details, please click the link of Arirang News broadcasted on August 19, 2010. http://www.arirang.co.kr/News/News_View.asp?nseq=106066&code=Ne2&category=2
2010.08.20
View 9029
An internationally renowned academic journal published the research result produced by a KAST research team on its cover.
Fc DAAP VEGF-Trap Photograph showing the gross features of tumor growth along the mesentery-intestinal border. T: tumor. Scale bars represent 5 mm. Professor Gou-Young Koh of the Biological Sciences Department, KAIST, and his research team published their research result in Cancer Cell, a peer-review scientific journal, as a cover article dated August 17, 2010. It is the first time for the journal to pick up a paper written by a Korean research team and publish it as the cover. It has been known that a vascular growth factor (VEGF) is closely related to the growth of a tumor. The research team recently discovered that in addition to VEGF, another growth factor, angiopoietin-2 (Ang2), is also engaged with the increase of tumors. Professor Koh said, “VEGF and the angiopoietins play critical roles in tumor progression and metastasis, and a single inhibitor targeting both factors have not been available.” The team led by Professor Koh has developed a double anti-angiogenic protein (DAAP) that can simultaneously bind VEGF-A and the angiopoietins and block their actions. Professor Koh said in his paper, “DAAP is a highly effective molecule for regressing tumor angiogenesis and metastasis in implanted and spontaneous solid tumor; it can also effectively reduce ascites formation and vascular leakage in an ovarian carcinoma model. Thus, simultaneous blockade of VEGF-A and angiopoietins with DAAP is an effective therapeutic strategy for blocking tumor angiogenesis, metastasis, and vascular leakage.” So far, cancer patients have received Avastin, anticancer drug, to inhibit VEGF, but the drug has not successfully restrained the growth of cancer tumors and brought to some of the patients with serious side effects instead. Professor Koh said, “DAAP will be very effective to control the expansion of tumor growth factors, which will open up a new possibility for the development of more helpful cancer medicine with low side effects.”
2010.08.20
View 11351
Nature Photonics, a peer-reviewed scientific journal, released a paper written by a KAIST research team on the time-of-flight measurement.
Professor Seung-Woo Kim of the Mechanical Engineering Department, KAIST, and his research team published the result of their study on the measurement of 1 nanometer (nm) precision. “The time-of-flight of light pulses has long been used as a direct measure of distance, but state-of-the-art measurement precision using conventional light pulses or microwaves peaks at only several hundreds of micrometers. Here, we improve the time-of-flight precision to the nanometer regime by timing femtosecond pulses through phase-locking control of the pulse repetition rate using the optical cross-correlation technique,” Professor Kim said. According to the experiment conducted by the research team, “An Allan deviation of 117 nm in measuring a 700m distance in air at a sampling rate of 5 millisecond (ms) once the pulse repetition is phased-locked, which reduces to 7 nm as the averaging time increases to 1 second (s).” When measuring an object located in a far distance, a laser beam is projected to the object, and the reflected light is analyzed; the light is then converted into an electric signal to calculate the distance. In so doing, Professor Kim said, the conventional method of measurement creates at least 1 mm of deviation. He argues, “This enhanced capability is maintained at long range without periodic ambiguity, and is well suited to lidar applications. This method could also be applied to future space missions involving formation-flying satellites for synthetic aperture imaging and remote experiments related to general relativity theory." Nature Photonics published the article online on August 8, 2010.
2010.08.18
View 10775
A graduating student speaks about "hope" for many disabled people who dare to have a dream of becoming a scientist.
Dong-Won Kim, a graduate student of the Mechanical Engineering Department, KAIST, will leave for the US at the end of this month to further pursue his advanced degree at University of Michigan (UM) in Ann Harbor. He has completed his master’s program at KAIST this summer, specializing in rehabilitation engineering. Mr. Kim was born with cerebral palsy, which made him difficult to talk and use his hands. Notwithstanding the obstacles, he went through the regular school system and earned a master’s degree offered by one of the toughest universities in Korea. When asked about what was the most difficult thing to study, he said with a gentle smile that “other than taking him a longer time to solve a math problem because of his weak hand muscle, he doesn’t have any difficulties.” “Of course, people around me helped me a lot, but I tried to maintain my confidence in me and did my best so as not to disappoint my family and friends who have supported me,” Mr. Kim added. Professor Pyung-Hoon Chang of the Mechanical Engineering Department, who was an adviser to Mr. Kim, recalled, “Dong-Won has been a great student; I was quite impressed with his intellectual vigor and academic passion. He got along well with his peer students and had always positive and can-do attitude. I’m really pleased to see him graduate, given the tough situation he’s been in. He sets an inspiring role model who overcame difficulties and achieved great accomplishments.” Mr. Kim hopes that universities including KAIST improve their educational environment to adopt friendlier policies toward the people with disabilities so that more of them can be offered an opportunity to become a scientist or engineer. He will study medical engineering at University of Michigan—through his doctoral study, he wishes to identify causes and improvements of disabilities suffered by people and become an expert in rehabilitation. Mr. Kim also donated 1 million won to KAIST out of his appreciation for the support he had received during his stay at the school. He said, “Although this is a small amount, I’d like to “thank you” for the members of KAIST community including its faculty and staff who have encouraged me to finish the study. If possible, I’d like to make a greater contribution in the future, and to that end, I’ll study harder and try to become the person whom I have planned for.” Upon hearing about his generosity, President Nam Pyo Suh said, “The gift is so wonderful because it was given to us from one of our students. I wish him great success in his future study and will look forward to having his valuable contributions to our school and the nation.”
2010.08.17
View 9974
KAIST has developed a powerless and wireless keyboard that can be folded and easily carried around.
The KAIST Institute for Information Technology Convergence (KIITC) has developed the next generation keyboard that does not need power and wires. The powerless/wireless keyboard developed by KIITC is flexible, foldable, portable, and compact, making the possession of keyboard easier and more convenient. The idea of this technology was derived from "Idea Contest for Future Device" opened by KIITC in 2007, and Future Device Team (Team Leader: Dr. Sungkwan Jung) of KIITC embodied the idea and developed full-flexible powerless/wireless keyboard by using the passive Radio Frequency Identification (RFID) technology to support the convenient data input for daily mobile life. Through the technology, KAIST expects to realize ubiquitous computing and communication environment, open a new market for foldable keyboards, and secure the competitiveness of mobile devices industries in the world market. KIITC has also successfully transferred the technology of powerless/wireless keyboard to Hanyang Demitech for commercialization.
2010.08.12
View 11507
A graduate-level education for working professionals in science programs and exhibitions will be available from mid-August this year.
The Graduate School of Culture Technology (GSCT), KAIST, has created a new course for professionals who purse their career in science programs and exhibitions, which will start on August 19 and continue through the end of November 2010. The course will be held at Digital Media City in Seoul. The course, also co-sponsored by National Science Museum, will offer students tuition-free opportunities to brush up their knowledge on the administration, policy, culture, technology, planning, contents development, and technology & design development, of science programs and exhibitions. Such subjects as science contents, interaction exhibitions, and utilization of new media will be studied and discussed during the course. Students will also have a class that is interactive, engaging, and visual, as well as provides hands-on learning activities. A total of 30 candidates will be chosen for the course. Eligible applicants are graduates with a B.S. degree in the relevant filed, science program designers and exhibitors, curators for science and engineering museums, and policy planners for public and private science development programs.
2010.08.12
View 10936
Texas Instruments, Inc. Agreed for Collaborative Research with Professor Hai-Joon Yoo, the Electrical Engineering Department of KAIST
Professor Hai-Joon Yoo from the Electrical Engineering Department of KAIST made a research collaboration agreement with Texas Instruments (TI), Inc. in July 2010 to develop a “Many-core Processor Chip,” a chip that is designed to emulate a human brain. TI, Inc. is an American company based in Dallas, Texas and renowned for developing and commercializing semiconductor and computer technology. The company is the 4th largest manufacturer of semiconductors worldwide, 2nd supplier of chips for cellular handsets, and 1st producer of digital signal processors and analog semiconductors, among a wide range of semiconductor products. TI, Inc. has designated Professor Yoo’s lab as one of its official labs and promised to give financial supports for the lab—it has pledged to donate a total value of 300 million won of research fund and equipment to Professor Yoo. On July 21, 2010, the signboard hanging ceremony for the designation of a TI Lab was held at Professor Yoo’s lab. Professor Yoo developed a neuro-circuit network to emulate a human brain by adopting a mixed mode circuit that has chips for analog and digital circuits. He then has conducted a research to graft the mixed mode circuit onto a Many-core Processor to integrate the human intelligence into a conventional single-core processor that can process one instruction at a time. The Many-core Processor, once developed, can be applied to various kinds of products such as an artificial intelligence surveillance camera, robot, smart car, and the like. Professor Yoo has presented his research results at numerous international meetings and conferences, among other things, the International Solid-State Circuits Conference (ISSCC), a global forum sponsored by the Institute of Electrical and Electronics Engineers (IEEE) for presentation of advances in solid-state circuits and Systems-on-a-Chip. The Conference offers a unique opportunity for engineers working at the cutting edge of IC design to maintain technical currency, and to network with leading experts. Professor Yoo is a senior member of IEEE and Chairman of ISSCC in Asia.
2010.08.05
View 11293
<<
첫번째페이지
<
이전 페이지
151
152
153
154
155
156
157
158
159
160
>
다음 페이지
>>
마지막 페이지 176