본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.27
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
l
by recently order
by view order
Professor Kim Seung Woo and Professor Ko Kyu Young Receive the 7th Gyeong Am Scholar Awards.
Professors Kim Seung Woo and Ko Kyu Young of KAIST were named the winners for the 7th Gyeong Am Scholar Awards. The award winners are: Professor Ko Kyu Young of KAIST in the Biological Sciences category, Professor Kim Seung Woo of KAIST in the Engineering category, Professor Kim Young Shik of Seoul National University and Professor Kil Hui Seoung of Sogang University in the Humanities category, and Professor Hong Byoung Hee of Seoul National University in the Natural Sciences category. In the Liberal Arts category leader of Universal Ballet Company Moon Hoon Sook was chosen, and the Special Achievement Award was given to Historian Dr. Park Myoung Sun. Professor Ko discovered that it is Angionpoietin-1 that induces the growth of new blood vessels and thus made a significant contribution to the field of blood vessel formation, immune mechanism, and causes of cancer spread. Professor Kim developed a mini extreme ultra violet laser light source using the resonance principles of plasmon and made a great contribution in the acquiring of core technologies and its industrial commercialization in the field of super precise optical instruments. Gyeong Am Education and Culture Foundation was founded by the Chairman of Tae Yang Group, Song Geum Jo who had donated his entire fortune amounting to 100billion Korean Won to society by creating a public foundation aimed at encouraging advancements in learning, training of experts, and cultural developments for the betterment of Korea. The Gyeong Am Scholar Awards was established in 2005 and recognizes those scholars and artists who are making significant contributions in the frontlines of society. The awards ceremony is to be held at Busan on the 4th of November, three thirty in the afternoon and the winner of each category is to receive 100mil Korean Won in prize money with a commemorative plaque.
2011.09.26
View 11692
Bicycle Sharing System "Ta-Shu" Arrives at KAIST.
KAIST has begun providing a bike rental service, called “Ta-Shu,” to its students. This bicycle sharing system, implemented in tandem with the local city government, has been in service since the 7th of September and will allow KAIST students to rent bicycles for travel within campus and even to other parts of the city, Daejeon. The ‘University Pubic-Bicycle Rental System’ is a program in which numbers of bicycles are made available for shared use by students. Initiated by the Ministry of Public Administration and Security, the university expects that more students will use bicycles as part of their daily mobility means through this system.
2011.09.22
View 8982
Cancer detection from an implantable, flexible LED
Professor Keon Jae Lee A KAIST research team has developed a new type of biocompatible and bendable GaN LED biosensor. Daejeon, the Republic of Korea, August 8, 2011—Can a flexible LED conformably placed on the human heart, situated on the corrugated surface of the human brain, or rolled upon the blood vessels, diagnose or even treat various diseases? These things might be a reality in the near future. The team of Professor Keon Jae Lee (Department of Materials Science and Engineering, KAIST) has developed a new concept: a biocompatible, flexible Gallium Nitride (GaN) LED that can detect prostate cancer. GaN LED, a highly efficient light emitting device, has been commercialized in LED TVs and in the lighting industry. Until now, it has been difficult to use this semiconductor material to fabricate flexible electronic systems due to its brittleness. The research team, however, has succeeded in developing a highly efficient, flexible GaN LED and in detecting cancer using a flexible LED biosensor. Prof. Lee was involved in the first co-invention of "High Performance Flexible Single Crystal GaN" during his PhD course at the University of Illinois at Urbana-Champaign (UIUC). This flexible GaN LED biosensor utilized a similar protocol to transfer thin GaN LED films onto flexible substrates, followed by a biocompatible packaging process; the system’s overall potential for use in implantable biomedical applications was demonstrated. Professor John Roger (Department of Materials Science and Engineering, UIUC) said, “Bio-integrated LEDs represent an exciting, new technology with strong potential to address important challenges in human health. This present work represents a very nice contribution to this emerging field.” This paper was published in the online issue of Nano Energy Elsevier Journal (Editor, Prof. Zhong Lin Wang) dated September 16, 2011. Flexible GaN LED produces blue light.
2011.09.20
View 13013
Mrs. Kim Sam Yeol donates to KAIST 5 billion Korean Won in real estate following her husband Chairman Kim Byoung Ho's act of generosity.
“Everything is hard the first time around, but it becomes easier from the second time around. The same goes for donation. I wish my small donation can go a long way in the development of KAIST.” Chairman Kim Byoung Ho donated to KAIST 30 billion Korean Won in real estate in 2009 and on the 19th of September of 2011, his wife Mrs. Kim Sam Yeol visited President Seo Nam Pyo at KAIST Seoul campus to donate 5 billion Korean Won in real estate. It is the first time in KAIST history that the donator of a substantial donation or his/her family member donates once more, an equally substantial donation. Mrs. Kim relayed that, “Seeing the Kim Byoung Ho & Kim Same Yeol IT Fusion Center start construction in May of this year as a result of my husband’s donation made me think how great a contribution we have made in the development of this country” and that “It has been some time since I decided to make additional donation upon the completion of the IT Fusion Center in December.” She explained that the earlier than planned donation reflects her wish that KAIST begin using and investing her donation as quickly as possible. Mrs. Kim stated that, “We planned to build a mansion to live in in commemoration of our 30th wedding anniversary on the real estate property we donated, but it seemed much better and meaningful to take part in the joy of giving and donate to KAIST with the belief that the property will be used in a more meaningful way.” She went on to say that, “It was harder to make the decision to donate the second time around. We felt sorry for our son and his spouse, but our decision was made final when we thought of the professors, students, staff, including President Seo Nam Pyo who spend day and night working to develop science and technology in Korea.” Her husband Chairman Kim Byoung Ho agreed to donate the real estate property to KAIST. President Seo commented, “Mrs. Kim Sam Yeol’s donation will contribute greatly to the spread of the ‘donation virus’ and will be marked as the start of a new chapter. In order to commemorate her goodwill for KAIST, it will be seen to it that the donation will be used in manner that is meaningful and beneficial to the development of KAIST.” The couple, Kim Byoung Ho and Kim Sam Yeol, has donated a sum of 20 million Korean Won since their 2009 donation for the development of KAIST.
2011.09.20
View 9270
Professor Lee Sang Yeop Nominated the Chairman of Emerging Technologies Global Agenda Council of the World Economic Forum
Professor Lee Sang Yeop, Dean of College Life Science & Bioengineering, was appointed as the chairman of the Emerging Technologies Global Agenda Council of the World Economic Forum. He will be in office till the 31st of August 2012, exactly 1 year from the date of his appointment. The World Economic Forum (WEF) is a ‘think tank’ consisting of world leaders in various fields like economics, politics, and policies and has created the ‘Global Agenda Council’ to solve the problems mankind faces in achieving environmentally sustainable growth and suggest a collective vision and strategy. The committee to be chaired by Professor Lee (Emerging Technologies Global Agenda Council) will discuss the direction in which the fields of biological engineering, nanotechnology, and IT (information technology) should develop and discuss the possible impact these fields will have on the society. Professor Lee commented that, “I am extremely happy to be appointed as the chair of the Emerging Technologies Global Agenda Council at the World Economic Forum which is a gathering of world class leaders” and that “it is a great opportunity to spread Korea’s success and lessons in the advancement of science and technology.” Professor Lee is the creator of the field of system metabolism engineering and is making great strides in manipulating the microorganism’s metabolic pathways on a systems scale to make changing chemicals derived from oil into eco-friendly and bio-based products.
2011.09.20
View 10417
Review of organophosphonate nerve agent remediation and sensing chemistry
Professor David Churchill, Dept. of Chemistry, KAIST Scientists in Daejeon, South Korea and Lexington, Kentucky (USA) have recently published a review on the subject of nerve agent remediation and probing chemistry (Chemical Reviews, DOI:10.1021/cr100193y). This article endeavored to pursue organophosphonate nerve agent chemistry deeply and comprehensively and to reflect that decontamination / sensing and nerve agents / pesticides are quite inextricable: when one tries to degrade nerve agents one also needs to detect what components are still present “downstream,” etc. Nerve agents and many pesticides also share a common generalized organophosphate / -phosphonate structure. Also, the use of simulant molecules (mimics) and a consideration of the closely related organophosphonate pesticides were also treated comprehensively in the Review. The authors reached back into the literature when developing some sections to make important connections to the contemporary topics of interest. The review also includes industrial insights. Kibong Kim, Olga G. Tsay and David G. Churchill of the Department of Chemistry at KAIST and David A. Atwood of the Department of Chemistry of the University of Kentucky endeavored to "make a variety of connections in research strategies and (sub-) fields to present what is still possible, fruitful, practical, and necessary and to facilitate a current comprehensive molecular level understanding of organophosphonate degradation and sensing," Churchill says. The authors feel that for the time being, researchers in varying research areas “can use this manuscript effectively when considering future research directions.”
2011.09.19
View 9730
New Technology Developed for Analysis of New Drugs by Using Smart Nano-Sensors
Doctor Sang-Kyu Lee Doctor Sang-Kyu Lee of the Department of Biological Sciences, KAIST, has developed the technology that allows biological nano particles to be implanted into human cells for monitoring the effect of new drugs in real time from within the cell. It is expected that this technology will boost the ability to weigh the effects and properties of a new drug more quickly and accurately. Conventionally, the candidate drug was injected into the human body, and then its cells are extracted to analyze the effects of the drugs. The problem with this method was that the cells were analyzed at a ‘dead’ state which made it incredibly difficult to find candidate substances due to uncontrollable side effects. This made the development of new drugs very difficult despite the large costs and efforts invested into its development. The research team latched onto the idea that nanoparticles can connect to form a large complex. The complex acts as a nanosensor which allows for real time observation of drug target and the drug itself binding. The team named the nanosensor technology ‘InCell SMART-i’ and was named ‘Hot Paper’ of the September edition of ‘Angewandte Chemie International Edition’ magazine, a world famous Chemistry Magazine.When a new drug injected into the human body, the drug and drug targets are gradually combined, and the smart nanosensor detects in real time the effect of the new drug as shown in the pictures above (shaded spot).
2011.09.19
View 10329
KOLON-KAIST Lifestyle Innovation Center Opening Ceremony
KAIST and KOLON opened the “Lifestyle Innovation Center” on the 6th of September this year. The ceremony was held at KAIST where the MOU for developing new industries was also signed. The opening ceremony was attended by Chairman of KOLON Lee Eung Yeul and CEO’s of other various affiliate companies like Kim Nam Soo, Bae Young Ho, Park Dong Moon, and etc. and also President of KAIST Seo Nam Pyo along with professors who will participate like Professor Lee Young Hoon, Professor Joo Dae Joon, Professor Bae Kyung Wook, and Vice President of KAIST Jo Dong Ho. The KOLON-KAIST Lifestyle Innovation Center (referred to as KOLON LSI Center) was developed under instructions from Chairman of KOLON Lee Eung Yeul wishing for the active cooperation and transfers of technologies with KAIST and, as a result, creating a domestic technology transfer network. The two institutes will be working together in finding highly promising fields of industry (with high risk but also high return) through research and development, technological advices, competitive exhibitions, and workshops. Chairman of KOLON Lee Eung Yeul stated that “it is imperative to increase the success rate of new business and shorten the time frame of starting a new business by encouraging the business community to launch startups more and for the executive community including policy makers to support such endeavors” and that “the KOLON LSI Center will create a positive synergy to that end.” President Seo Nam Pyo commented that, “KOLON-KAIST LSI Center is different even at the conceptual level” and that “I am confident that it will be a great success as it is the first of specialized joint labs in Korea that encourages professors and researchers of companies to conduct joint research programs.” LSI Center was founded and will be administered by the Collective Contribution from KOLON, KOLON Industry, and KOLON GloTech, investing 7.5billion Korean Won over the course of 5 years.
2011.09.19
View 11320
KAIST Online Electirc Vehicle Introduced by CNN
CNN aired KAIST’s Online Electric Vehicle (OLEV) on August 29, 2011 in its program called “Eco Solutions” that reports on meeting people with innovative solutions to preserve the planet. The reporter went to Seoul Grand Park, an amusement park and introduced an online electric tram developed by KAIST and operated on a daily basis for park visitors since July 29, 2011. KAIST has designed different types of OLEVs including bus, SUV, and tram. The reporter said that “the online electric tram” at the park provides visitors with a “cleaner, greener, and convenience since it charges as you go.” Currently, three OLEVs are running inside the park, and KAIST plans to replace the rest of existing diesel trams with OLEVs in the near future. CNN Link: http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html Youtube Link: http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.09
View 11758
Op-Ed by MIT President, Manufacturing a Recovery, New York Times, August 29, 2011
New York Times carried an opinion piece of MIT President, Susan Hockfield. Dr. Hockfield put emphasis on the importance of recovering manufacturing to revive the US economy and suggested investments in the development of high technology and “tight integration of design production” through “networks of innovation, lab research to new production processes, and business models.” For the op-ed piece, please go to http://www.nytimes.com/2011/08/30/opinion/manufacturing-a-recovery.html?_r=2.
2011.08.31
View 11217
Future of Petrochemical Industry: The Age of Bio-Refineries
The concept of bio-refinery is based on using biomass from seaweeds and non-edible plant sources to produce various materials. Bio-refineries has been looked into with increasing interest in modern times due to the advent of global warming (and the subsequent changes in the atmosphere) and the exhaustion of natural resources. However past 20 years of research in metabolic engineering had a crucial limitation; the need to improve the efficiency of the microorganisms that actually go about converting biomass into biochemical materials. In order to compensate for the inefficiency, Professor Lee Sang Yeop combined systems biology, composite biology, evolutionary engineering to form ‘systems metabolic engineering’. This allows combining various data to explain the organism’s state in a multi-dimensional scope and respond accordingly by controlling the metabolism. The result of the experiment is set as the cover dissertation of ‘Trends in Biotechnology’ magazine’s August edition.
2011.07.28
View 12852
Wireless electric trams at Seoul Amusement Park begin full operations.
Photo by Hyung-Joon Jun IMMEDIATE RELEASE Wireless electric trams at Seoul Amusement Park begin full operations. KAIST’s On-Line Electric Vehicle (OLEV) becomes an icon of green technology, particularly for young students who aspire to transform their nation into the “vanguard of sustainability.” Seoul, South Korea, July 19, 2011—As young students wrap up their school work before summer vacation in late July, Seoul Grand Park, an amusement park located south of Seoul, is busily preparing to accommodate throngs of summer visitors. Among the park’s routine preparations, however, there is something new to introduce to guests this summer: three wireless electric trams have replaced the old diesel-powered carts used by passengers for transportation within the park. The Korea Advanced Institute of Science and Technology (KAIST) and the city of Seoul held a ceremony this morning, July 19, 2011, to celebrate their joint efforts to adopt a green public transportation system and presented park visitors with the three On-Line Electric Vehicles (OLEVs), which will be operated immediately thereafter. Approximately one hundred people, including science high school students across the nation, attended the ceremony and had a chance to ride the trams. KAIST unveiled the prototype of an electric tram to the public in March 2010, and since then it has developed three commercial trams. The Korean government and the institute have worked on legal issues to embark on the full-scale commercialization of OLEV, and the long awaited approval from the government on such issues as standardization of the OLEV technology and road infrastructure, regulation of electromagnetic fields and electricity safety, and license and permits for vehicle eligibility, finally came through. The On-Line Electric Vehicle (OLEV) is no ordinary electric car in that it is remotely charged via electromagnetic fields created by electric cables buried beneath the road. Unlike other currently available electric cars, OLEV can travel unlimited distances without having to stop to recharge. OLEV also has a small battery onboard, which enables the vehicle to travel on roads that are not equipped with underground power cables. This battery, however, is only one-fifth of the size of a conventional electric vehicle battery, resulting in considerable savings in the cost, size, and weight of the vehicle. The OLEV project was initiated in 2009 as a method of resolving the battery problems of electric cars in a creative and disruptive way. KAIST came up with the idea of supplying electricity directly to the cars instead of depending solely on the onboard battery for power. Since then, the university has developed core technologies related to OLEV such as the “Shaped Magnetic Field in Resonance (SMFIR),” which enables an electric car to collect the magnetic fields and convert them into electricity, and the “Segment Technology,” which controls the flow of electromagnetic waves through an automatic power-on/shut-down system, thereby eliminating accidental exposure of the electromagnetic waves to pedestrians or non-OLEV cars. According to KAIST, three types of OLEV have been developed thus far: electric buses, trams, and sport utility vehicles (SUVs). The technical specifications of the most recently developed OLEV (an electric bus), the OLEV research team at the university said, are as follows: · Power cables are buried 15cm beneath the road surface. · On average, over 80% power transmission efficiency is achieved. · The distance gap between the road surface and the underbody of the vehicle is 20cm. · The OLEV bus has a maximum electricity pickup capacity of 100kW. · The OLEV bus complies with international standards for electromagnetic fields (below 24.1 mG). The eco-friendly electric trams at Seoul Grand Park consume no fossil fuels and do not require any overhead wires or cables. Out of the total circular driving route (2.2km), only 16% of the road, 372.5m, has the embedded power lines, indicating that OLEV does not require extensive reconstruction of the road infrastructure. The city government of Seoul signed a memorandum of understanding with KAIST in 2009 as part of its initiatives to curtail emissions from public transportation and provide cleaner air to its citizens. Both parties plan to expand such collaboration to other transportation systems including buses in the future. KAIST expects the OLEV technology to be applied in industries ranging from transportation to electronics, aviation, maritime transportation, robotics, and leisure. There are several ongoing international collaborative projects to utilize the OLEV technology for a variety of transportation needs, such as inner city commute systems (bus and trolley) and airport shuttle buses, in nations including Malaysia, US, Germany, and Denmark. # # # More information about KAIST’s On-Line Electric Vehicle can be found at http://olev.co.kr/en/index.php. For any inquiries, please contact Lan Yoon at 82-42-350-2295 (cell: 82-10-2539-4303) or by email at hlyoon@kaist.ac.kr.
2011.07.22
View 16500
<<
첫번째페이지
<
이전 페이지
121
122
123
124
125
126
127
128
129
130
>
다음 페이지
>>
마지막 페이지 163