본문 바로가기 대메뉴 바로가기

research

Wearable Device to Monitor Sweat in Real Time​
View : 6638 Date : 2021-06-25 Writer : PR Office

An on-skin platform for the wireless monitoring of flow rate, cumulative loss, and temperature of sweat in real time

Sweat as a source of biomarkers. A wireless electronic patch (left) measures sweat’s volumetric flow and cumulative loss. It can be combined with the microfluidic system (right) that provides pH measurements and determines the concentration of chloride, creatine, and glucose in a user’s sweat. These indicators could be used to diagnose cystic fibrosis, diabetes, kidney dysfunction, and metabolic alkalosis.

< Sweat as a source of biomarkers. A wireless electronic patch (left) measures sweat’s volumetric flow and cumulative loss. It can be combined with the microfluidic system (right) that provides pH measurements and determines the concentration of chloride, creatine, and glucose in a user’s sweat. These indicators could be used to diagnose cystic fibrosis, diabetes, kidney dysfunction, and metabolic alkalosis. >

An electronic patch can monitor your sweating and check your health status. Even more, the soft microfluidic device that adheres to the surface of the skin, captures, stores, and performs biomarker analysis of sweat as it is released through the eccrine glands. 

This wearable and wireless electronic device developed by Professor Kyeongha Kwon and her collaborators is a digital and wireless platform that could help track the so-called ‘filling process’ of sweat without having to visually examine the device. The platform was integrated with microfluidic systems to analyze the sweat’s components.

To monitor the sweat release rate in real time, the researchers created a ‘thermal flow sensing module.’ They designed a sophisticated microfluidic channel to allow the collected sweat to flow through a narrow passage and a heat source was placed on the outer surface of the channel to induce a heat exchange between the sweat and the heated channel. 

As a result, the researchers could develop a wireless electronic patch that can measure the temperature difference in a specific location upstream and downstream of the heat source with an electronic circuit and convert it into a digital signal to measure the sweat release rate in real time. The patch accurately measured the perspiration rate in the range of 0-5 microliters/minute (μl/min), which was considered physiologically significant. The sensor can measure the flow of sweat directly and then use the information it collected to quantify total sweat loss. Moreover, the device features advanced microfluidic systems and colorimetric chemical reagents to gather pH measurements and determine the concentration of chloride, creatinine, and glucose in a user's sweat. 

Professor Kwon said that these indicators could be used to diagnose various diseases related with sweating such as cystic fibrosis, diabetes, kidney dysfunction, and metabolic alkalosis. “As the sweat flowing in the microfluidic channel is completely separated from the electronic circuit, the new patch overcame the shortcomings of existing flow rate measuring devices, which were vulnerable to corrosion and aging,” she explained.

The patch can be easily attached to the skin with flexible circuit board printing technology and silicone sealing technology. It has an additional sensor that detects changes in skin temperature. Using a smartphone app, a user can check the data measured by the wearable patch in real time. 

Professor Kwon added, “This patch can be widely used for personal hydration strategies, the detection of dehydration symptoms, and other health management purposes. It can also be used in a systematic drug delivery system, such as for measuring the blood flow rate in blood vessels near the skin’s surface or measuring a drug’s release rate in real time to calculate the exact dosage.”

-Publication
Kyeongha Kwon, Jong Uk Kim, John A. Rogers, et al. “An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time.” Nature Electronics (doi.org/10.1038/s41928-021-00556-2)

-Profile
Professor Kyeongha Kwon
School of Electrical Engineering
KAIST

Releated news