Renowned scholars and editors from academic journals joined the Emerging Materials e-Symposium (EMS) held at KAIST and shared the latest breakthroughs and big ideas in new material development last month. This e-symposium was organized by Professor Il-Doo Kim from the KAIST Department of Materials Sciences and Engineering over five days from September 21 through 25 via Zoom and YouTube. Professor Kim also serves as an associate editor of ACS Nano.
Esteemed scholars and editors of academic journals including ACS Nano, Nano Energy, and Energy Storage Materials made Zoom presentations in three main categories: 1) nanostructures for next-generation applications, 2) chemistry and biotechnology for applications in the fields of environment and industry, and 3) material innovation for technological applications.
During Session I, speakers including Professor John A. Rogers of Northwestern University and Professor Zhenan Bao of Stanford University led the session on Emerging Soft Electronics and 3D printing.
In later sessions, other globally recognized scholars gave talks titled Advanced Nanostructuring for Emerging Materials, Frontiers in Emerging Materials Research, Advanced Energy Materials and Functional Nanomaterials, and Latest Advances in Nanomaterials Research.
These included 2010 Nobel Prize laureate and professor at Manchester University Andre Geim, editor-in-chief of ACS Nano and professor at UCLA Paul S. Weiss, Professor Paul Alivisatos of UC Berkeley, Professor William Chueh of Stanford University, and Professor Mircea Dinca of MIT.
KAIST President Sung-Chul Shin, who is also a materials physicist, said in his opening address, “Innovation in materials science will become an important driving force to change our way of life. All the breakthroughs in materials have extended a new paradigm that has transformed our lives.”
“Creative research projects alongside global collaborators like all of you will allow the breakthroughs that will deliver us from these crises,” he added.
(END)
<(From Left) M.S candidate Chaeyul Kang, Professor Seumgbum Hong, Ph. D candidate Benediktus Madika, Ph.D candidate Batzorig Buyantogtokh, Ph.D candiate Aditi Saha, > Collaborating authors include Professor Joshua Agar (Drexel University), Professors Chris Wolverton and Peter Voorhees (Northwestern University), Professor Peter Littlewood (University of St Andrews), and Professor Sergei Kalinin (University of Tennessee). Paper Title: Artificial Intelligence for Materials Discovery, Dev
2025-10-27<(From left) Ph.D candidates Songho Lee, Donggeun Park, and Hyeonbin Moon, and Professor Seunghwa Ryu from the Department of Mechanical Engineering; (top) Professor Jae Hyuk Lim from Kyung Hee University and Dr. Wabi Demeke from KAIST> One of the key steps in developing new materials is “property identification,” which has long relied on massive amounts of experimental data and expensive equipment, limiting research efficiency. A KAIST research team has introduced a new tech
2025-10-10< Diden Robotics Research Team Co., Ltd (Leftmost person in the front row is CEO Joon-Ha Kim)> KAIST announced on the September 30th that domestic robot startups, founded on KAIST research achievements, are driving new innovation at shipyards and urban worksites. An industrial walking robot that freely climbs walls and ceilings and a humanoid walking robot that walks through downtown Gangnam are attracting attention as they enter the stage of commercialization. The stars are DIDEN Rob
2025-09-30<(From left, clockwise) Professor Kyung Min Kim, Min-Gu Lee, Dae-Hee Kim, Dr. Han-Chan Song, Tae-Uk Ko, Moon-Gu Choi, and Eun-Young Kim> The human brain does more than simply regulate synapses that exchange signals; individual neurons also process information through “intrinsic plasticity,” the adaptive ability to become more sensitive or less sensitive depending on context. Existing artificial intelligence semiconductors, however, have struggled to mimic this flexibility of
2025-09-30<(From Left to Right)Professor Jihan Kim, Ph.D. candidate Sinyoung Kang, Ph.D. candidate Younghoon Kim from the Department of Chemical and Biomolecular Engineering> Multivariate Porous Materials (MTV) are like a 'collection of Lego blocks,' allowing for customized design at a molecular level to freely create desired structures. Using these materials enables a wide range of applications, including energy storage and conversion, which can significantly contribute to solving environmenta
2025-09-09