본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
TE
by recently order
by view order
World Research University Heads Discuss Challenges in Global Financial Turmoil at 2009 International Presidential Forum in Seoul
Leaders of the world"s major research universities discussed the impact of the global economic crisis on institutions of higher learning and their research activities in particular and exchanged opinions and visions on ways to increase cooperation with governments and industry at a symposium organized by KAIST Monday (Sept. 21) at the Westin Chosun Hotel in Seoul. More than 50 participants of the 2nd International Presidential Forum on Global Research Universities represented institutions in North America, Europe, Southeast Asia, Australia, China and Japan. They were joined by 20 presidents of Korean universities and two dozens of leaders from industry and the government. Under the main subject of "Challenges to Global Research Universities," the international symposium proceeded in four panel sessions. The subjects of each session and their keynote speakers were: -- "Institutional Management in Times of Financial Crisis" by Kurt Kutzler, President of Berlin Institute of Technology -- "Innovations in Education & Research" by Brian Cantor, Vice Chancellor of University of York -- "Globalization of Institutes of Higher Learning" by Gary Schuster, Provost and Executive Vice President of Georgia Institute of Technology -- "The Roles of Government, University and Industry in Green Technology Development" by KAIST President Nam-Pyo Suh KAIST President Suh expressed deep gratitude to all participants for their presentations focused on how universities weathered the difficulties from the economic turmoil and how they were continuing efforts for innovation in research and education. He observed that the 2009 International Presidential Forum was again most successful and productive after the first in 2008 and offered a precious opportunity for leaders of research universities to establish effective networking among their institutions. "The world has witnessed a global financial turmoil of unseen magnitude and many nations are still struggling under the devastating impacts. While universities were no exception in facing economic turmoil, they have realized renewed pressures and expectations from their respective communities to provide answers to the great challenges,” he said in his welcoming remarks. "The conference I am sure will have a far-reaching influence on the course our research universities will take to shoulder greater responsibilities for building a better future of the mankind." Some of the participants in the 2009 International Presidential Forum came to KAIST’s Daejeon campus to take part in the EEWS (energy, environment, water and sustainability) workshop which was held on Tuesday, Sept. 22. The Chronicle of Higher Learning, the Washington-based newspaper specializing in university education, reported from Seoul that the Forum revealed that, while American universities struggle amid the harshest economic climate in a generation, institutions in much of the rest of the world are sheltered from the fallout by strong government backing. “Delegates to a conference of university presidents (in Seoul on Monday, Sept. 22) heard that colleges in Asia and Europe are pushing ahead with expansion plans – even as their U.S. counterparts cut back. “The 2009 International Presidential Forum… was marked by a sharp divide in the tone set by European, Asian, and U.S. college leaders. The Americans often sounded a deeply gloomy note,” The Chronicle reported. “Never before has the impact been this bad,” the paper quoted Vishwanath Prasad, vice president for research and economic development at the University of North Texas, as saying. On the other hand, Yves Poilane, vice president of the Paris Institute of Technology, said, according to The Chronicle, “The largely state financing of most European universities has so far acted as a shelter, and higher education remains a priority for both European and French Universities.” The Korea Herald, published in Seoul, said in its Sept. 23 editorial: “This week in Seoul, a symposium of leaders from international and Korean research universities heard top scholars and administrators reveal how their schools have suffered through the year under reduced government subsidies and private endowments which forced them to postpone various globalization schemes and cut down on research expenditures. Applications for master"s and Ph.D. programs declined while large percentages of graduates failed to find jobs. “With their country showing a rapid pace of recovery, universities in Korea are in a better situation than many of their overseas counterparts, especially considering the substantial government outlays for research and development in "low carbon, green growth" projects that are largely dependent on research universities. The more the government seeks their direct contributions, the harder universities should try to increase transparency and accountability in the use of taxpayer money, so as not to betray the nation"s trust in them. “In the wake of the global economic crisis, academia, government and industry find themselves in closer ties as they share new concepts of innovation and development in a common quest for growth. The tripartite cooperation has new significance in the recovery process. To achieve any development objectives, the other two partners must prioritize the funding of universities.”
2009.09.24
View 12646
Prof. Cho Elected Editor-in-Chief of Systems Biology
Prof. Kwang-Hyun Cho of Department of Bio and Brain Engineering at KAIST has been recently elected editor-in-chief of the Systems Biology, an international journal published by the London-based Institution of Engineering and Technology (IET), the university authorities said on Wednesday (Sept. 23) By the year 2012, Cho will oversee the editorial process of the journal covering intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. IET, one of the world"s leading professional societies for the engineering and technology community, has a worldwide membership of more than 150,000. Prof. Cho"s research interests cover the areas of systems science with bio-medical applications including systems biology and bio-inspired engineering based on molecular systems biology. He is currently an editorial board member of Systems and Synthetic Biology (Springer, Netherlands, from 2006), BMC Systems Biology (BMC, London, U.K., from 2007), Gene Regulation and Systems Biology (Libertas Academica, New Zealand, from 2007), and Bulletin of Mathematical Biology (Springer, New York, from 2008), and an editorial advisory board member of Molecular BioSystems (The Royal Society of Chemistry, U.K.).
2009.09.24
View 14586
World Research University Heads to Discuss Challenges in Global Financial Turmoil
About 70 leaders of the world"s major research universities will discuss how to better contribute to continued development of human society in global financial turmoil at a symposium organized by KAIST Monday (Sept. 21) at the Westin Chosun Hotel in Seoul. Participants of the 2nd International Presidential Forum on Global Research Universities are from 40 universities in 25 countries, including Stanford University and Georgia Institute of Technology of the United States, Berlin Institute of Technology of Germany, Paris Institute of Technology of France, Technical University of Denmark, National University of Singapore and Tokyo Institute of Technology. They include 20 presidents of Korean universities and two dozens of leaders from industry and the government. Under the main subject of "Challenges to Global Research Universities," the international symposium will proceed in four panel sessions. The subjects of each session and their keynote speakers are: -- "Institutional Management in Times of Financial Crisis" by Kurt Kutzler, President of Berlin Institute of Technology -- "Innovations in Education & Research" by Brian Cantor, Vice Chancellor of University of York -- "Globalization of Institutes of Higher Learning" by Gary Schuster, Provost and Executive Vice President of Georgia Institute of Technology -- "The Roles of Government, University and Industry in Green Technology Development" by KAIST President Nam-Pyo Suh KAIST President Suh said of the purpose of the conference: "The world has witnessed a global financial turmoil of unseen magnitude and many nations are still struggling under the devastating impacts. While universities were no exception in facing economic turmoil, they have realized renewed pressures and expectations from their respective communities to provide answers to the great challenges." "The conference will serve as an opportunity for the representatives of research universities to compare their visions of networking among theier institutions and initiate steps for new relationships. The conference I am sure will have a far-reaching influence on the course our research universities will take to shoulder greater responsibilities for building a better future of the mankind." For more information, visit forum.kaist.ac.kr
2009.09.16
View 14765
Prof. Ryoo's Team Discovers Breakthrough Method to Create New Zeolite
A group of scientists led by Prof. Ryong Ryoo of the Department of Chemistry, KAIST, has found a method to direct the growth of zeolite, a crystalline substance that is frequently used as catalyst in the chemical and petrochemical industries, the university authorities said on Thursday (Sept. 10). Ryoo"s research team successfully created ultrathin nano-sheets, only two nano-meters thick, that are efficiently used as long-life catalysts for hydrocarbon cracking and other petrochemical applications. The breakthrough finding, which is credited with taking acidic zeolite catalysts to the limit in terms of thickness, was published in the latest edition of the peer-review journal, "Nature." A team from the Polytechnic Univeristy of Valencia, Spain, also contributed to the research. Zeolites are already widely used in the petrochemical industry, but making the catalysts very thin means that reactant molecules can easily diffuse into the zeolite structure and product molecules can get out quickly. This improves the efficiency of the catalyst and reduces unwanted side reactions that can produce polymeric hydrocarbon "coke" that clogs the zeolite pores and eventually kills the catalytic activity, Prof. Yoo said. To make the thin sheets, Ryoo and his team used a surfactant as a template to direct the growth of the zeolite structure. The surfactant molecule has a polar "head" group - with two quaternary ammonium groups around which the aluminosilicate zeolite crystal grows - and a long hydrocarbon "tail," which prevents the sheets from aggregating together into larger, three dimensional crystals. When the surfactant is removed, these flakes pile up randomly with gaps in between which further aids diffusion to the catalyst sites. "Zeolite could be used as a catalyst to convert heavy oil into gasoline. Our new zeolite could provide even more possibilities, such as being used as catalysts for transforming methanol into gasline," Ryoo said. Prof. Ryoo, a Distinguished Professor of KAIST, has won a variety of academic awards, which included the Top Scientist Award given by the Korean government in 2005 and the 2001 KOSEF Science and Technology Award for his work on the synthesis and crystal structure of mezzoporous silica. Ryoo obtained his bachelor"s degree from Seoul National University in 1977, master"s from KAIST in 1979, and doctorate from Stanford University in 1985. In 2006, Ryoo and his research team announced the discovery of a form of zeolite that can catalyze petrochemical reactions much more effectively than previous zeolites. Because of the potential of this to streamline the gasoline refining process, it was greeted as a "magical substance" by the South Korean press.
2009.09.11
View 11739
Scaling Laws between Population and Facility Densities Found
A research team led by Prof. Ha-Woong Jeong of the Department of Physics, KAIST, has found a positive correlation between facilities and population densities, university authorities said on Tuesday (Sept. 2). The research was conducted in the cooperation with a research team of Prof. Beom-Jun Kim at Sungkyunkwan University. The researchers investigated the ideal relation between the population and the facilities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, the relation between population and facilities should follow a simple law. The new empirical analysis, however, determined that the law is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy, the researchers proposed a model based on economic mechanism that mimics the competitive balance between the profit of the facilities and the social opportunity cost for population. The results were published in the Proceedings of the National Academy of Sciences of the United States on Aug. 25.
2009.09.04
View 11916
Professor Jong Hyun Kim receives two awards from ASME
Professor Jong Hyun Kim, Bently & Muszynska Endowed Chair Professor in the Dept. of Nuclear and Quantum Engineering, KAIST, has recently received Dedicated Service Award from the American Society of Mechanical Engineers (ASME). The award honors unusual dedicated voluntary service to ASME marked by outstanding performance, demonstrated effective leadership, and prolonged commitment. The award was bestowed on Professor Kim in recognition of his sustained and exemplary service, leadership, and contributions to ASME. While chairing the Heat Transfer Division of ASME, Professor Kim promoted industrial participation, broadened international exchanges, and spearheaded the initiative to institute the web-based conference organization that later became the standard tool for organizing all ASME conferences. ASME has also announced that Professor Kim was selected to receive the Heat Transfer Memorial Award and will be honored at its winter annual meeting this November. This award is bestowed on individuals who have made outstanding contributions to the field of heat transfer through teaching, research, practice and design, or a combination of such activities. Professor Kim was selected in recognition of his exceptional and impactful contributions to industry through applied research and innovative applications of science, art, and technology of heat transfer and thermal engineering. In particular, he tackled some of the toughest critical technical issues of serious safety implications in nuclear industry. The results of his research over the past 35 years produced tangible and substantial economic benefits to energy and nuclear industry that are conservatively estimated to be in the range of a few hundred million dollars of cost savings. Professor Kim is a Fellow of ASME. ASME is the world’s largest professional society for mechanical engineers with over 100,000 members.
2009.09.01
View 10843
Prof. Lee"s Team Pioneers Biotechnological Production of Chemical Using Renewable Materials
A research team led by Prof. Sang-Yup Lee of the Bio and Brain Engineering Department at KAIST has succeeded in engineering the bacterium E. coli to produce the industrial chemical putrescine, university authorities said on Monday (Aug. 31). Putrescine, a four carbon chain diamine, is an important platform chemical with a wide range of applications for the pharmaceutical, agrochemical and chemical industries. It is currently used to synthesize nylon-4,6, a widely used engineering plastic. The research result, published in the Biotechnology and Bioengineering journal, proviDrdes a renewable alternative to the traditional process using fossil fuels. Currently the production of putrescine on an industrial scale relies on chemical synthesis, which requires non-renewable petrochemicals and expensive catalyst systems. This process is highly toxic and flammable with potentially severe repercussions for both the environment and human health. "For the first time we have developed a metabolically engineered E. coli strain that efficiently produces putrescine," said Professor Lee. "The development of a bio-refinery for chemicals and materials is very important in a world where dependency on fossil fuels is an increasing concern." The team developed a strain of E.coli capable of producing putrescine through metabolic engineering. This is where a cell"s metabolic and regulatory networks are enhanced in order to increase production of a needed material. First the team weakened or deleted competing metabolic pathways within the E. coli strain before deleting pathways which cause putrescine degradation. They also amplified the crucial enzyme Spec C, which converts the chemical ornithine into putrescine. Finally the putrescine exporter, which allows excretion of intracellularly made putrescine, was engineered while a global regulator was engineered to further increase the concentration of putrescine. The final result of this process was an engineered E.coli strain which produced 24.2 g of putrescine per litre. However, as it was believed that putrescine is toxic to microorganisms the team had to study putrescine tolerance in E.coli before it could be engineered to overproduce the chemical to the levels needed for industrial production. The results revealed that E. coli can tolerate at least 0.5 M of putrescine, which is tenfold higher than the usual concentration in the cell. This level of tolerance was an important surprise as it means that E. coli can be engineered to overproduce putrescine to industrially competitive levels. "The previously expected toxicity of putrescine may explain why its microbial production has been overlooked," said Lee. "Now a metabolically engineered E. coli strain has been developed which is capable of efficiently producing putrescine using renewable methods to an industrial level. This metabolic engineering framework should be useful for developing metabolically engineered microorganisms for the efficient production of other chemicals from renewable resources," he added.
2009.09.01
View 12854
KAIST Undergraduates Open Four-Day International Conference
The ICISTS-KAIST, an annual international conference organized by KAIST undergraduate students, opened on Thursday (Aug. 20) at the KAIST"s main campus in Daejeon. The 2009 ICISTS (International Conference for the Integration of Science and Technology into Society) drew around 200 experts and students from 44 countries. Since its inception in 2005 to promote discourse on important science and technology issues affecting modern society, the conference has served as an opportunity for academic networking among students in various parts of the world. The four-day conference consists of lectures, open discussions among lecturers and students, field trips to help students to understand actual applications, and team projects. This year"s conference offers three workshops under the themes of "Climate Change: Merging Technology and Policy for Green Solutions"; "Human-Computer Interaction: Designing Computer System for Intuitive Human Access"; and "Nano Clinic: Breakthrough in Conquering Disease." Lectures by invited experts in various scientific fields will help broaden students" perspectives particularly from interdisciplinary viewpoints, said an organizer of the conference.
2009.08.28
View 13480
Transparent Antenna for Automobile Developed
A research team led by Prof. Jae-Woo Park of the School of Electrical Engineering & Computer Science, KAIST, developed a transparent antenna for the next-generation automobiles, university authorities said on Monday (Aug. 17). The development was made possible through joint researches with the Hyundai-Kia Automotive Group; Winncom, a car antenna manufacturer; and a group of researchers led by Han-Ki Kim of the Department of Display Materials Engineering at Kyung Hee University in Seoul. The transparent antennas were developed in two kinds -- one for the HSDPA (High-Speed Downlink Packet Access), a new protocol for mobile telephone data transmission, and the other for transmitting and receiving radio wave for emergency call. Using the transparent electrically conductive film formation technology, the transparent antennas are to be mounted on the windshield of a vehicle. "The development of transparent antenna represents a step forward for the advancement of the next-generation automotive electronic technology," said Seong-woo Kim, a senior researcher at the Hyundai-Kia Group.
2009.08.18
View 12302
KAIST College of Life Sciences and Bioengineering Signs MOU with Harvard
KAIST’s College of Life Sciences and Bioengineering recently signed a memorandum of understanding (MOU) with Harvard University’s Center for Brain Science on July 20, which will allow for joint research and exchange in researchers between the two institutions. Headed by Director Kenneth Blum, Harvard’s Center for Brain Science leads the world in brain-related research. The new MOU will allow for research cooperation, exchanges of professors, researchers, and students, joint usage of infrastructure and research materials, and finally, sharing of research assignments. The Dean of the College of Life Sciences and Bioengineering Sang Yup Lee, who concerted efforts to form the MOU said, “This agreement will bring together two of the world’s leading brain-related research teams, and I hope that combining their expertise will bring great advances in brain science and engineering. KAIST’s College of Life Science and Bioengineering, which is known for its creative interdisciplinary research, is producing exemplary research results in the field of brain science from its Biological Sciences and Bio and Brain Engineering departments. In addition to cooperation with Harvard, KAIST has also formed partnerships with Emory University, Japan’s RIKEN Brain Institute, and Germany’s Max Planck Institute. Not only does it have a worldwide network pertaining to brain research, but KAIST has also engaged in cooperative research with prominent domestic institutions such as, Asan Medical Center, the Korea Research Institute of Bioscience and Biotechnology, the Korea Research Institute of Standards and Science, and the SK Corporation. Through these connections, KAIST has managed to lead in mutually cooperative brain interdisciplinary research.
2009.08.10
View 14516
KAIST's OLEV Best Model of Creative Growth Engine
Various models of electric vehicles designed to replace the internal combustion automobiles face significant problems as they invariably failed to overcome the limitations involving lithium battery in terms of power capacity, weight, raw materal price, recharging time and preparation of charging stations. Worst of all, the limited supply of lithium will eventually raise its price sky high when all cars use lithium batteries, and the economic value of electric cars will be lost. KAIST"s online electric vehicle project (OLEV) seeks to resolve these fundamental problems involving electric vehicles that have so far been developed. KAIST OLEV, a project to develop a new growth engine for the nation and lead the future of global automotive industry, is an entirely new concept: the electric vehicle picks up power from underground power supplier lines through the non-contact magnetic charging method, while either running or standing. This is the first eco-friendly and economic automotive system that can resolve the problems inherent to previously-developed electric vehicles, according to the KAIST OLEV Project Center. In February 2009, KAIST researchers first proved that up to 80 percent power conveyance is possible through a gap of 1 centimeter from the power line, and in July they successfully supplied power to a bus -- up to 60 percent across a 12 cm gap from the power line embedded in the ground -- using power supply and pick-up devices they developed. In this process, KAIST has secured the core technologies for maximizing power efficiency and minimizing the cost of installing the non-contact power supply system. KAIST has established the Online Electric Vehicle Co., Ltd., to undertake business activities related to the OLEV project, including the IPR on power supply and pick-up devices, parts and accessories and commercial promotion. A demonstration event is scheduled for Aug. 13, Thursday. The impact of the development of the OLEV technology on the energy and environment issues and the overall economy will be enormous. In case a half of the total automobiles running in Korea, or 6 million vehicles, are replaced with OLEV, electric power produced by just two of the nation"s atomic power plants will be enough to operate them all, and the nation will be able to reduce crude oil import by 35 million barrels worth U.S.$3 billion a year (supposing $80 per barrel). Korea"s export of OLEV units will in the future surpass the present level of overseas sale of conventional cars. When nations use online electric vehicles in large numbers, their demand for CO2-free power plants will grow. Korea has cutting-edge technology in the construction of atomic power plants. As a world leader in the area of nuclear power plant, Korea will enjoy new opportunities to contribute to the global advancement of atomic power generation as well as transportation industries. Korea still shares a small portion of the world"s automobile market estimated to worth some 2,000 trillion Korean won. But commercialization of the OLEV technology worldwide will greatly enhance Korea"s global automotive market share. Successful development of the online electric vehicle requires preemptive investment and positive support by the government for the ultimate purpose of resolving energy and environment problems. If and when domestic enterprises secure technological supremacy in the next generation automobile market with their online electric vehicles which will replace the 100-year-old combustion engine, it will be the most desirable shortcut to raising Korea"s international competitiveness. OLEV promises to be the model of creative growth engine in the 21st century.
2009.07.30
View 15860
KAIST Professor Sang-Yup Lee Chair of International Metabolic Engineering Conference Due Next Year
KAIST distinguished professor Sang-Yup Lee was named to chair the 17th Metabolic Engineering Conference which will convene on Jeju Island, Korea, next year, under the theme of "Metabolic Engineering for Green Growth." It was decided at the 16th Biochemical Engineering Conference held in Burlington, Vermont, on July 5-9. Metabolic Engineering Conference in 2010 will not only involve presentations and discussions about metabolic engineering, but will inaugurate the “World Council on Industrial Biotechnology,” which will bring together global corporations and the world’s experts in industrial biochemical engineering, according to sources at KAIST. A KAIST official commented, “The fact that the Metabolic Engineering Conference is to be held here [in Korea] proves that Korea is being acknowledged as a key player in this field.” As the world faces the depletion of fossil fuels and environmental pollution, nations are showing increasing interest in industrial biochemical alternatives, such as microscopic organisms or new chemicals, to solve their problems. In addition, efficient production of biochemical materials and bio-fuels using microbes is deemed vital for the future. “The Korean government has become a model to other countries thanks to its leadership in carrying out the ‘Green Growth’ policy,” Professor Sang-Yup Lee said. He stated that KAIST is recognized for its research in advanced biochemical material and fuel production methods. “Green Growth,” a concept first developed by ESCAP, the UN agency working for social and economic cooperation in Asia and the Pacific, aims to achieve sustainable economic growth without destroying the environment. Ref. Department of Biochemical Engineering, Metabolic and BioMolecular Engineering Lab, KAIST
2009.07.17
View 12539
<<
첫번째페이지
<
이전 페이지
91
92
93
94
95
96
97
98
99
100
>
다음 페이지
>>
마지막 페이지 109