본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ANS
by recently order
by view order
Dong Ah Newspaper Publish '100 Koreans who will Represent Korea in 10 years'
The 2011 list of ‘100 Koreans who will Represent Korea in 10 years’ published by Dong Ah Newspaper includes people of varying ages, vocation, and gender. In terms of University Professors, five professors from each of KAIST and SNU (Seoul National University) were selected. Especially Professor Charles Ahn received the most votes due to his world class talent, potential, and dedication. Professor Kim Sang Wook of the Department of Materials Science and Engineering is the world leading expert in the field of ‘Atom Construction Nanotechnology’ which deals with using macromolecules, carbon nanotubes, and grapheme to form various structures. His work on ‘low cost, large area nano patterning technology’ is expected to overcome the limits of nano treatment processes and its application in semi-conductors or displays carries great promise. Professor Kim Eun Sung of the Department of Physics discovered a new quantum behavior, supersolidity, in a low temperature, solid Helium for the first time in the world and is the leading scientist that leads the mechanics behind such a phenomenon. Professor Kim is leading the field of supersolidity through his works on hidden phase in a low temperature solid Helium, the understanding the role of crystalline faults in the supersolidity phenomenon, and the destruction of the supersolid’s macromolecular phenomenon through spinning solids. Professor Charles Ahn of the Graduate School of Innovation and Technology Management has been working as the developer of the V3 series (an anti-computer virus Vaccine Program) since 1988. He established the ‘Charles Ahn Research Center’ in 1995 and his solid and practical management style won him rave reviews. Professor Ahn was appointed as the Professor of the Graduate School of Innovation and Technology Management and has been teaching entrepreneurial perspective and Technology Management. Professor Lee Sang Yeop of the Department of Biology and Chemical Engineering developed world’s most efficient production method of succinic acid, developed high efficiency, tailored, culture for the production of key amino acids, Valine and Threonine, developed the production culture off bio-buthanol which is superior to bio-ethanol, and is widely known as one of the leaders in the field of metabolic engineering. Professor Jeong Ha Woong of the Department of Physics is being regarded as world leader in the field of Complex System Network Sciences. He implemented Statistical Physics to Complex Systems and also used the concept of ‘Networks’ and published 80 papers, including 5 which were published in Nature Magazine.
2011.04.30
View 12487
MOU on Joint Research Program with KUSTAR
KAIST has signed a MOU on Joint Research Program with KUSTAR (Khalifa, University of Science, Technology, and Research). The Signing ceremony was held in UAE Abu Dhabi with KAIST President Seo Nam Pyo and KUSTAR Presdient Tod Laursen in attendance. The MOU contains agreements on seed money project, exchange professors and students program, seminars and workshops, and cooperative closely through funding joint research facilities among other key agreements. The two universities are considering joint research on educational nuclear power plant simulator, research use nuclear reactor plans and nuclear reactor for saltwater desalination plants. In addition, the field of cooperation will not be limited to nuclear power, but will be broadened to electric and electronic, mechanical engineering, aeronautical engineering, industrial engineering, construction environment, and other fields by appointing KAIST professors to perform educational cooperation programs at KUSTAR. The cooperation is part of the agreement made by the two respective countries in the Korea export of nuclear power plants to UAE in 2009. KAIST will be helping KUSTAR to develop into a world leading science and technology based education and research institute for the next 10 years.
2011.03.25
View 11398
KAIST paves the way to commercialize flexible display screens
Source: IDTechEX, Feb. 28, 2011 KAIST paves the way to commercialize flexible display screens 28 Feb 2011 Transparent plastic and glass cloths, which have a limited thermal expansion needed for the production of flexible display screens and solar power cells, were developed by researchers at KAIST (Korea Advance Institute of Science & Technology). The research, led by KAIST"s Professor Byoung-Soo Bae, was funded by the Engineering Research Center under the initiative of the Ministry of Education, Science and Technology and the National Research Foundation. The research result was printed as the cover paper of "Advanced Materials". Professor Bae"s team developed a hybrid material with the same properties as fiber glass. With the material, they created a transparent, plastic film sheet resistant to heat. Transparent plastic film sheets were used by researchers all over the world to develop devices such as flexible displays or solar power cells that can be fit into various living spaces. However, plastic films are heat sensitive and tend to expand as temperature increases, thereby making it difficult to produce displays or solar power cells. The new transparent, plastic film screen shows that heat expansion index (13ppm/oC) similar to that of glass fiber (9ppm/oC) due to the presence of glass fibers; its heat resistance allows to be used for displays and solar power cells over 250oC. Professor Bae"s team succeeded in producing a flexible thin plastic film available for use in LCD or AMOLED screens and thin solar power cells. Professor Bae commented, "Not only the newly developed plastic film has superior qualities, compared to the old models, but also it is cheap to produce, potentially bringing forward the day when flexible displays and solar panels become commonplace. With the cooperation of various industries, research institutes and universities, we will strive to improve the existing design and develop it further." http://www.printedelectronicsworld.com/articles/kaist_paves_the_way_to_commercialize_flexible_display_screens_00003144.asp?sessionid=1
2011.03.01
View 12343
Cho Cheon Shik Graduate School of Green Transportation Initiated
KAIST established the Graduate School of Green Transportation in efforts to participate actively in the green transportation market and train experts in the field. The opening ceremony was conducted in the KI building with President of KAIST Seo Nam Pyo and other dignitaries from Ministry of Land, Transport and Maritime Affairs, Korea Rail Network Authority, Korea Airports Corporation, Korea Railroad Research Institute, Land, Transport and Maritime Experts Training Institute, Seoul Development Institute, LG Innotech, Hyundai Rotem, and other major companies in the field of transportation attending. The graduate school was founded with funding from donation made by Chairman Cho Cheon Shik. Developer of OLEV Professor Cho Dong Ho is the dean of the school and 16 other professors are a part of the school. Courses offered include ‘Transportation Technology’ and ‘Transportation management’ and will focus mostly on allowing students to be a part of the graduate school with flexibility. In terms of research there is the OLEV and mobile harbor and research will be done on electric and electronics, mechanics, materials, aeronautics, maritime, construction, environment, and etc. and will be an interdisciplinary research. A memorandum of understanding was signed by the companies mentioned above which has now paved the way for experts to be trained and thus upgrade the level of technology in the field of green transportation. Professor Seo of KAIST commented, ‘Korea is ranked top 10 in the world for greenhouse gas emissions and it has become hard to avoid global pressure. The results of researched performed at KAIST will allow Korea to form a green, sustainable society leading in the field of green transportation and dominate the market.
2011.02.23
View 14636
New Year's Message from President Nam-Pyo Suh
President Nam-Pyo Suh delivered a New Year’s message on January 3, 2011. While announcing plans to celebrate the 40th anniversary of KAIST throughout this year including a long-term development strategy for the university, Vision 2025, the president assessed the past accomplishments made in 2010 and laid out future prospects for 2011. The full text of his speech is attached below.
2011.01.05
View 8431
International Workshop on EEWS 2010 was held.
On October 7 and 8th at Fusion Hall of KI Building, KAIST, the 2010 International Workshop on EEWS (Energy, Environment, Water, and Sustainability) was held. The third to be held, forty national and international academic professionals including Mark Shannon, professor at University of Illinois at Urbana-Champaign, Domen Kazunari, Tokyo University professor, Dong Sub Kim, CTO of SK Energy and Doyoung Seung, Senior Vice President of GS Caltex, participated at this year’s workshop. In twelve sessions, themes including Artificial Photosynthesis, Wireless Power Transfer, Green Aviation, Safe Nuclear Fuel Reuse, Fuel Cells in Action, LED 2.0, Foundation of Energy-Water Nexus, and Flexible Battery & Solar Cell were presented and discussed. “Through this workshop, current EEWS policy and research progress from different countries and the future of related technologies will be foreseen,” said Jae Kyu Lee, Dean of KAIST EEWS Initiative. “I hope it became an opportunity to create cooperative relationships with leading researchers.” EEWS is a research project conducted by KAIST to solve global issues that mankind faces today such as depletion of energy, environmental pollution, water shortage, and sustainability.
2010.10.15
View 14782
Nanowire crystal transformation method was newly developed by a KAIST research team.
Figure 1 Schematic illustration of NW crystal transformation process. FeSi is converted to Fe3Si by high-temperature thermal annealing in diluted O2 condition and subsequent wet etching by 5% HF. Figure 2 Low-resolution TEM images of FeSi; Fe3Si@SiO2 core—shell; Fe3Si NW after shell-etching; and Scale bars are 20 nm Professor Bongsoo Kim of the Department of Chemistry, KAIST, and his research team succeeded to fabricate Heusler alloy Fe3Si nanowires by a diffusion-driven crystal structure transformation method from paramagnetic FeSi nanowires. This methodology is also applied to Co2Si nanowires in order to obtain metal-rich nanowires (Co) as another evidence of the structural transformation process. The newly developed nanowire crystal transformation method, Professor Kim said, would be valuable as a general method to fabricate metal-rich silicide nanowires that are otherwise difficult to synthesize. Metal silicide nanowires are potentially useful in a wide array of fields including nao-optics, information technology, biosensors, and medicine. Chemical synthesis of these nanowires, however, is challenging due to the complex phase behavior of silicides. The metal silicide nanowires are grown on a silicon substrate covered with a thin layer of silicon oxide via a simple chemical vapor deposition (CVD) process using single or multiple source precursors. Alternatively, the nanowires can be grown on the thin silicon oxide film via a chemical vapor transport (CVT) process using solid metal silicide precursors. The CVT-based method has been highly effective for the syntheses of metal silicide NWs, but changing the composition of metal silicide NWs in a wider range, especially achieving a composition of a metal to silicon, has been quite difficult. Thus, developing efficient and reliable synthetic methods to adjust flexibly the elemental compositions in metal silicide NWs can be valuable for the fabrication of practical spintronic and neonelectronic devices. Professor Kim expliained, “The key concept underlying this work is metal-enrichment of metal silicide NWs by thermal diffusion. This conversion method could prove highly valuable, since novel metal-rich silicide NWs that are difficult to synthesize but possess interesting physical properties can be fabricated from other metal silicide NWs.” The research result was published in Nanao Letters, a leading peer-reviewed journal, and posted online in early August 2010.
2010.08.25
View 10391
An internationally renowned academic journal published the research result produced by a KAST research team on its cover.
Fc DAAP VEGF-Trap Photograph showing the gross features of tumor growth along the mesentery-intestinal border. T: tumor. Scale bars represent 5 mm. Professor Gou-Young Koh of the Biological Sciences Department, KAIST, and his research team published their research result in Cancer Cell, a peer-review scientific journal, as a cover article dated August 17, 2010. It is the first time for the journal to pick up a paper written by a Korean research team and publish it as the cover. It has been known that a vascular growth factor (VEGF) is closely related to the growth of a tumor. The research team recently discovered that in addition to VEGF, another growth factor, angiopoietin-2 (Ang2), is also engaged with the increase of tumors. Professor Koh said, “VEGF and the angiopoietins play critical roles in tumor progression and metastasis, and a single inhibitor targeting both factors have not been available.” The team led by Professor Koh has developed a double anti-angiogenic protein (DAAP) that can simultaneously bind VEGF-A and the angiopoietins and block their actions. Professor Koh said in his paper, “DAAP is a highly effective molecule for regressing tumor angiogenesis and metastasis in implanted and spontaneous solid tumor; it can also effectively reduce ascites formation and vascular leakage in an ovarian carcinoma model. Thus, simultaneous blockade of VEGF-A and angiopoietins with DAAP is an effective therapeutic strategy for blocking tumor angiogenesis, metastasis, and vascular leakage.” So far, cancer patients have received Avastin, anticancer drug, to inhibit VEGF, but the drug has not successfully restrained the growth of cancer tumors and brought to some of the patients with serious side effects instead. Professor Koh said, “DAAP will be very effective to control the expansion of tumor growth factors, which will open up a new possibility for the development of more helpful cancer medicine with low side effects.”
2010.08.20
View 11382
KAIST has developed a powerless and wireless keyboard that can be folded and easily carried around.
The KAIST Institute for Information Technology Convergence (KIITC) has developed the next generation keyboard that does not need power and wires. The powerless/wireless keyboard developed by KIITC is flexible, foldable, portable, and compact, making the possession of keyboard easier and more convenient. The idea of this technology was derived from "Idea Contest for Future Device" opened by KIITC in 2007, and Future Device Team (Team Leader: Dr. Sungkwan Jung) of KIITC embodied the idea and developed full-flexible powerless/wireless keyboard by using the passive Radio Frequency Identification (RFID) technology to support the convenient data input for daily mobile life. Through the technology, KAIST expects to realize ubiquitous computing and communication environment, open a new market for foldable keyboards, and secure the competitiveness of mobile devices industries in the world market. KIITC has also successfully transferred the technology of powerless/wireless keyboard to Hanyang Demitech for commercialization.
2010.08.12
View 11541
A senior couple donated their fortune to KAIST, hoping their contribution to be used for the development of science and technology in Korea.
A couple living in Kyunggi Province, Chun-Sik Cho (86) and Chang-Gi Yoon (82), donated to KAIST a 10 billion won worth of real estate. The couple thought about giving away their fortune since retirement and finally made up their mind after becoming to know about their neighbor’s good deeds. The neighbor, Byung-Ho Kim, gave KAIST a 30 billion won worth of real estate last year. Influenced by Mr. Kim’s donation and their long-cherished wish to help others in need, the couple decided to transfer the ownership of their land to KAIST. They hoped that their contribution to be used for the development of science and technology in Korea. The couple, who survived through the Korean civil war in the early 1950s, recalled their old days, “We made through a harsh and difficult life right after the war. Everyone was poor and had nothing to wear or eat. We literally had to eat all sorts of grasses that were green on the ground. All of us had to work really hard to get out of despair resulted from the colonization of our nation by Japan and the subsequent civil war.” Mr. Cho added, “The development of science and technology in our nation really propelled the overall advancement of our society and helped to make today’s success that is enjoyed by the current generation of our nation. It is our greatest hope that our contribution will add a small help in our nation’s efforts to further advance the development of science and technology. I would like KAIST to do just that with our donation.” KAIST announced a plan to use their contribution for the establishment of a new graduate school specialized in green transportation and the development of related technology, called Green Transportation Graduate School. The university will name the new graduate school after the couple’s name in recognition of their goodwill. The Green Transportation Graduate School will host academic programs and conduct researches related to the future transportation that is based on a renewable energy source and provides answers to the current energy problems faced by mankind. Multidisciplinary and convergent studies will be implemented through collaborations between academia, governments, and industries. In the past four years, KAIST has witnessed a dramatic increase in the number and amount of donations received from all corners of Korean society and from around the world since President Nam Pyo Suh took the university’s top administrative office in 2006—1,004 in 2006; 2,158 in 2007; 3,091 in 2008; and 3,324 in 2009. Major contributions since 2006 30 billion Won by Moon-Sul Chung in July 2001 10 million USD by Byiung-Joon Park in September 2007 2.5 million USD by Neil Pappalardo in November 2007 57.8 billion Won by Geun-Chul Ryu in August 2008 30 billion Won by Byung-Ho Kim in August 2009
2010.07.07
View 10977
KAIST introduced environmentally friendly public transportation to Seoul Grand Park.
KAIST introduced environmentally friendly public transportation to Seoul Grand Park. First step toward the commercialization of Online Electric Vehicle (OLEV) An online electric vehicle (OLEV) developed by KAIST replaced a trackless combustion-engine train running inside Seoul Grand Park in Gwacheon City, South Korea. On March 9, 2010, Seoul City and KAIST celebrated the completion of OLEV that picks up electricity from power cables buried underground through a non-contact magnetic charging method, called electromagnetic induction. Electromagnetic induction is the process of inducing electric current in a coil with the help of a magnet. The pickup unit installed underneath OLEV collects electricity from a roadway and distributes the power either to operate the vehicle or for battery storage. Whether running or stopped, OLEV constantly receives electric power through the underground cables. As a result, OLEV mitigates the burden of equipping electric automobiles with heavy, bulky batteries—OLEV’s battery size is one-fifth that of the batteries installed in electric vehicles currently on the market. There is no need to establish massive charging stations or to set aside much time for recharging. If the underground power lines installed on road curbs, bus stops, parking lots, and intersections, the power system could support a substantial portion of public transportation: For example, KAIST estimates that by establishing 20% of the road infrastructure for a bus route in Seoul City, the city could offer its citizens the online electric buses. The non-contact charging of vehicles while running, idling, or parking is an important and practical technology necessary for the development of commercialized electric vehicles. This technology solves many of the issues related to the current batteries of electric vehicles, including size, expense, and repair/maintenance. In addition, non-contact charging is safer because it prevents potential electrical hazards, such as electric shock, that result from direct contact with power sources. Furthermore, it is more convenient to drive vehicles without overhead wires directly connected to power lines, as is necessary for streetcars and trams. The recharging strips are divided into several meters of segments in length, and vehicles receive the power each time they pass over one. In other words, a sensor is affixed within each segment. When a car with the pickup equipment drives over the segment, the sensor is turned on for the car to receive electricity. This means that when a car without the pickup equipment passes over the segment, it will not collect any electricity. The power supply via on/off switch (sensors) relieves safety concerns about electromagnetic field (EMF). Pedestrians or cars without the pickup unit will not be exposed to EMF because the sensor embedded in the segments will not work, thus no electricity generated. In addition, even under the circumstance of EMF yield, the test results for OLEV are well below the 1998 the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guideline, 62.5mG at 20khz. OLEV’s EMF test results range from 20mG (inside OLEV while running) to 50mG (around OLEV while parking). When talking about a wireless energy transfer such as electromagnetic induction, the most critical issue is how to reserve an air gap of 12cm (in accordance with Korean law) between the surface of roads and the bottom of vehicles while having 60% power transmission efficiency or above. There was a similar research done in the US at University of Berkley—their research was considered unsuccessful because they obtained an air gap of 5-7cm with 60% maximum level of efficiency. Besides, their electromagnetic field (EMF) was quite high (2000A), and they were unable to bring down the high cost of installing power supply system. By contrast, for the first time in the world, KAIST has succeeded to obtain 12cm (and up to 17cm) of air gap with more than 70% efficiency level of power transmission. The EMF is also well below the international standard of 62.5mG. In a nutshell, KAIST has achieved a core technology in terms of capacity, efficiency, and EMF to develop electric vehicles for commercial use. The city government of Seoul and KAIST signed a Memorandum of Understating (MOU) on the development of an online electric vehicle in August 2009. Against the backdrop of the public’s increased awareness of environmental pollution and the depletion of fossil fuels, the two organizations agreed to introduce eco-friendly vehicles to the city’s public transportation, beginning with the introduction of a trial version of OLEV to places like an amusement park, bus terminal, airport, shopping mall, and the like. KAIST’s OLEV research team is made up of experts from a variety of fields, including electrical and electronics engineering, computer sciences, civil engineering, information technology, and mechanical engineering. OLEV’s success at Seoul Grand Park is a result of KAIST’s innovative initiatives on convergence research, and KAIST has submitted more than 120 applications for patents right in connection with the development of OLEV. Online Electric Vehicle at Seoul Grand Park In terms of power transmission efficiency, KAIST’s research team achieved a maximum pick-up capacity of 62kw/h, 74% with an air gap height of 13cm from a road to the bottom of a vehicle. Composed of one engine and three passenger cars, OLEV travels along a total length of 2.2km beltway. There are four sections of power supply infrastructure established on the route (Sections 1, 2, and 3: 122.5 meters long each, and Section 4: 5 meters long). The power supply cables were laid underground for a total of 372.5 meters, 16% of the total distance of the 2,200 meter route.
2010.03.12
View 12505
[Event Notice] International Workshop on Computer Science Education and Research
2010 Asia-Africa International Workshop on Computer Science Education and Research The Department of Computer Science at KAIST will host an international workshop on the education and research of computer science in Asia and Africa. The workshop, “2010 Asia-Africa International Workshop on Computer Science Education and Research” will be held on February 17-19, 2010 at a conference room located inside the KAIST Main Building. Deans of computer science departments from 13 different universities in Asia and Africa will attend the workshop. At the workshop, participants will introduce their own education and research programs and discuss ways to have mutual collaborations. This is the first time for representatives from the computer science and engineering departments of leading universities in the newly developing countries—for instance, Thailand, Vietnam, Nigeria, Egypt, and Indonesia—to attend a meeting organized by institutions based in Korea. These countries have a large amount of natural resources and great potential to grow as a front runner in the information technology (IT) sector. Professor Key-Sun Choi, Dean of Computer Science Department at KAIST, hopes that the workshop will be a place where participated universities discuss mutual cooperation and collaboration; exchange their ideas and knowledge of course management and education and research experiences; and share their vision of global leadership to advance the development of computer science and engineering. Dean Choi mentioned that his department has also had consultations with the Korean government regarding a possible exchange program to select 10 or 20 members of faculty and students from universities in the newly developing nations for a doctoral course at KAIST. The exchange program, he said, would attract many of excellent candidates from nations with an emerging market for the IT industry to study at KAIST. The highly trained workforces who finish the KAIST doctoral program will contribute not only to their nations’ IT development but also to Korea’s.
2010.02.18
View 12477
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 11