본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
School+of+Electrical+Engineering
by recently order
by view order
Rise of the mimic-bots that act like we do: Human-machine teamwork.
An online magazine, Technology Marketing Corporation, based in the UK published an article, dated January 8, 2011, on a robot research project led by Professor Jong-Hwan Kim from the Electrical Engineering Department. The article follows below: Technology Marketing Corporation [January 08, 2011] Rise of the mimic-bots that act like we do Human-machine teamwork (New Scientist Via Acquire Media NewsEdge) Rise of the mimic-bots that act like we doA robot inspired by human mirror neurons can interpret human gestures to learn how it should actNow follow meA robot inspired by human mirror neurons can interpret human gestures to learn how it should actA HUMAN and a robot face each other across the room. The human picks up a ball, tosses it towards the robot, and then pushes a toy car in the same direction. Confused by two objects coming towards it at the same time, the robot flashes a question mark on a screen. Without speaking, the human makes a throwing gesture. The robot turns its attention to the ball and decides to throw it back. In this case the robot"s actions were represented by software commands, but it will be only a small step to adapt the system to enable a real robot to infer a human"s wishes from their gestures. Developed by Ji-Hyeong Han and Jong-Hwan Kim at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, the system is designed to respond to the actions of the person confronting it in the same way that our own brains do. The human brain contains specialised cells, called mirror neurons, that appear to fire in the same way when we watch an action being performed by others as they do when we perform the action ourselves. It is thought that this helps us to recognise or predict their intentions. To perform the same feat, the robot observes what the person is doing, breaks the action down into a simple verbal description, and stores it in its memory. It compares the action it observes with a database of its own actions, and generates a simulation based on the closest match. The robot also builds up a set of intentions or goals associated with an action. For example, a throwing gesture indicates that the human wants the robot to throw something back. The robot then connects the action "throw" with the object "ball" and adds this to its store of knowledge. When the memory bank contains two possible intentions that fit the available information, the robot considers them both and determines which results in the most positive feedback from the human?- a smile or a nod, for example. If the robot is confused by conflicting information, it can request another gesture from the human. It also remembers details of each interaction, allowing it to respond more quickly when it finds itself in a situation it has encountered before. The system should allow robots to interact more effectively with humans, using the same visual cues we use. "Of course, robots can recognise human intentions by understanding speech, but humans would have to make constant, explicit commands to the robot," says Han. "That would be pretty uncomfortable."Socially intelligent robots that can communicate with us through gesture and expression will need to develop a mental model of the person they are dealing with in order to understand their needs, says Chris Melhuish, director of the Bristol Robotics Laboratory in the UK. Using mirror neurons and humans" unique mimicking ability as an inspiration for building such robots could be quite interesting, he says. Han now plans to test the system on a robot equipped with visual and other sensors to detect people"s gestures. He presented his work at the Robio conference in Tianjin, China, in December. nAs the population of many countries ages, elderly people may share more of their workload with robotic helpers or colleagues. In an effort to make such interactions as easy as possible, Chris Melhuish and colleagues at the Bristol Robotics Laboratory in the UK are leading a Europe-wide collaboration called Cooperative Human Robotic Interaction Systems that is equipping robots with software that recognises an object they are picking up before they hand it to a person. They also have eye-tracking technology that they use to monitor what humans are paying attention to. The goal is to develop robots that can learn to safely perform shared tasks with people, such as stirring a cake mixture as a human adds milk. (c) 2011 Reed Business Information - UK. All Rights Reserved.
2011.01.10
View 10680
South Koreans Develop High-Performance Software Router.
HPC Wire, covering news on computing software, hardware, networking, storage, tools and applications, published an article on the development of high-performance router by a KAIST research team. The research team consisted of the Departments of Computer Science and Electrical Engineering, KAIST, presented PacketShader, a high-performance software router framework for general packet processing with Graphics Processing Unit (GPU) acceleration. PacketShader, the research team said, that exploits the massively-parallel processing power of GPU to address the CPU bottleneck in current software routers. For the article, please click the link: http://www.hpcwire.com/news/South-Koreans-Develop-High-Performance-Software-Router-101401434.html
2010.08.25
View 10785
Texas Instruments, Inc. Agreed for Collaborative Research with Professor Hai-Joon Yoo, the Electrical Engineering Department of KAIST
Professor Hai-Joon Yoo from the Electrical Engineering Department of KAIST made a research collaboration agreement with Texas Instruments (TI), Inc. in July 2010 to develop a “Many-core Processor Chip,” a chip that is designed to emulate a human brain. TI, Inc. is an American company based in Dallas, Texas and renowned for developing and commercializing semiconductor and computer technology. The company is the 4th largest manufacturer of semiconductors worldwide, 2nd supplier of chips for cellular handsets, and 1st producer of digital signal processors and analog semiconductors, among a wide range of semiconductor products. TI, Inc. has designated Professor Yoo’s lab as one of its official labs and promised to give financial supports for the lab—it has pledged to donate a total value of 300 million won of research fund and equipment to Professor Yoo. On July 21, 2010, the signboard hanging ceremony for the designation of a TI Lab was held at Professor Yoo’s lab. Professor Yoo developed a neuro-circuit network to emulate a human brain by adopting a mixed mode circuit that has chips for analog and digital circuits. He then has conducted a research to graft the mixed mode circuit onto a Many-core Processor to integrate the human intelligence into a conventional single-core processor that can process one instruction at a time. The Many-core Processor, once developed, can be applied to various kinds of products such as an artificial intelligence surveillance camera, robot, smart car, and the like. Professor Yoo has presented his research results at numerous international meetings and conferences, among other things, the International Solid-State Circuits Conference (ISSCC), a global forum sponsored by the Institute of Electrical and Electronics Engineers (IEEE) for presentation of advances in solid-state circuits and Systems-on-a-Chip. The Conference offers a unique opportunity for engineers working at the cutting edge of IC design to maintain technical currency, and to network with leading experts. Professor Yoo is a senior member of IEEE and Chairman of ISSCC in Asia.
2010.08.05
View 12642
New director of National Nano Fab Center was named.
Professor Ki-Ro Lee from the Electrical Engineering Department of KAIST has been appointed as the new Director of National Nano Fab Center, an affiliated institute to KAIST and will serve the position for three years beginning from May 4, 2010. Director Lee graduated from Seoul National University in 1976 and received his doctoral degree from University of Minnesota, Twincities, the US, in 1983. He has taught at the Electrical Engineering Department since 1986. While at KAIST, he served as the dean of research affairs from 1998-200 and 2004-2005, respectively. From 2005 to 2007, he worked as the Director of LG Advanced Institute of Technology.
2010.05.19
View 11230
A KAIST graduate to become a professor at a prestigious university in UAE
A KAIST graduate to become a professor at a prestigious university in UAE Dr. Jerald Yoo, a KAIST graduate, has been appointed as an assistant professor at the Masdar Institute of Science and Technology (MIST) in Abu Dhabi, United Arab Emirates (UAE), by the recommendation of the Massachusetts Institute of Technology (MIT) since April 1, 2010. The MIST is a private, not-for-profit, independent, research-driven institute developed with the support and cooperation of MIT and the Abu Dhabi government, which was opened in September 2009. Currently, at the school, there are 25 professors and 100 students from 22 countries around the world. The institute has a campus in Masdar City where the Abu Dhabi government plans to nurture it as a “place for zero carbon emissions.” According to an agreement between the MIST and MIT, Professor Yoo will teach and work on co-research projects at MIT for one year beginning in May 2010 and then working at the MIST thereafter. Professor Yoo received all of his degrees (BS, MS, and Ph.D.) from KAIST majoring in electrical engineering and earned his doctoral degree in January 2010. His research works included developing a wearable patch to monitor bio signals with an application of wearable sensor networks and low energy electronic circuit technologies. During his doctoral study, Professor Yoo published papers at the IEEE International Solid-State Circuits Conference (ISSCC) and in journals of IEEE Solid-State Circuits Society (SSCS). Professor Yoo said, "The wearable health care system is certainly necessary to improve the quality of our lives, and the field should receive a sustaining support for further research. I will do my best to continuously produce valuable research results and hope that my research works will be helpful for an academic exchange between South Korea and Abu Dhabi.” About the Masdar Institute of Science and Technology (MIST) in Abu Dhabi: http://www.masdar.ac.ae/ The Masdar Institute is the centerpiece of the Masdar Initiative, a landmark program announced in April 2006 by the government of Abu Dhabi to establish an entirely new economic sector dedicated to alternative and sustainable energy. Masdar is a highly-strategic initiative with primary objectives of: helping drive the economic diversification of Abu Dhabi; maintaining and expanding Abu Dhabi"s position in evolving global energy markets; positioning Abu Dhabi as a developer of technology; and making a meaningful contribution towards sustainable human development. The Masdar Institute is a private, not-for-profit, independent, research-driven institute developed with the support and cooperation of the Massachusetts Institute of Technology (MIT). The Institute offers Masters and (eventually) PhD programs in science and engineering disciplines, with a focus on advanced energy and sustainable technologies. It welcomes and encourages applications from qualified local and international students and provides fellowships to talented students who meet its high admission standards. Its faculty is of the highest quality and the intent is to have the structure of its top administration similar to MIT"s.
2010.04.13
View 13197
A Breakthrough for Cardiac Monitoring: Portable Smart Patch Makes It Possible for Real-time Observation of Heart Movement
Newly invented device makes the monitoring easier and convenient. Professor Hoi-Jun Yoo of KAIST, Department of Electrical Engineering, said that his research team has invented a smart patch for cardiac monitoring, the first of its kind in the world. Adhesive and can be applied directly to chest in human body, the patch is embedded with a built-in high performance semiconductor integrated circuit (IC), called Healthcare IC, and with twenty five electrodes formed on the patch’s surface. The 25-electrodes, with a capability of creating various configurations, can detect cardiac contractions and relaxations and collect electrocardiogram (ECG) signals. The Healthcare IC monitors ECG signals and sends the information to a portable data terminal like mobile phones, making it possible for a convenient, easy check up on cardiac observations. The key technologies used for the patch are the Healthcare IC that measures cardiovascular impedance and ECG signals, and the electronic circuit board made of four layers of fabric, between which electrodes, wireless antenna, circuit board, and flexible battery are installed. With the P-FCB (Planar Fashionable Circuit Board) technology, the research team explained, electrodes and a circuit board are directly stacked into the fabric. Additionally, the Healthcare IC (size: 5mm x 5mm), which has components of electrode control unit, ECG and cardiovascular resistance detection unit, data compression unit, Static Random Access Memory (SRAM), and wireless transmitter receiver, is attached on the fabric. The Healthcare IC is operated by an ultra-low electrical power. Like a medicated patch commonly used to relieve arthritis pains, the surface of smart patch is adhesive so that people can carry it around without much hassle. A finished product will be 15cm x 15 cm in size and 1mm high in thickness. The Healthcare IC can measure cardiovascular impedance variances with less than 0.81% distortion in 16 different configurations through differential current injectors and reconfigurable high sensitivity detection circuitry. “The patch will be ideal for patients who suffer a chronic heart disease and need to receive a continuous care for their condition. Once commercialized, the patch will allow the patients to conduct a self-diagnosis at anytime and anywhere,” said Yan Long, a member of the research team. There has been a continuously growing demand worldwide since 2000 for the development of technology that provides a suitable healthcare management to patients with a chronic heart disease (e.g., cardiovascular problems), but most of the technology developed today are only limited to monitoring electrical signals of heart activity. Cardiovascular monitors, commonly used at many of healthcare places nowadays, are too bulky to use and give uncomfortable feelings to patients when applied. Besides, the current monitors are connected to an electrical line for power supply, and they are unable to have a low power communication with an outdoor communication gadget, thus unavailable for wide use. Professor Yoo gave his presentation on this new invention at an international conference, International Solid-State Circuits Conference, held on February 8-10 in San Francisco. The subject of his presentation was “A 3.9mW 25-electorde Reconfigurable Thoracic Impedance/ECG SoC with Body-Channel Transponder.” (Picture 1) Structure of Smart Patch (Picture 2) Smart patch when applied onto human body (Picture 3) Data received from smart patch (Picture 4) Healthcare IC
2010.02.17
View 15305
Prof. Choi Unveils Method to Improve Emission Efficiency of OLED
A KAIST research team led by Prof. Kyung-Cheol Choi of the School of Electrical Engineering & Computer Science discovered the surface plasmon-enhanced spontaneous emission based on an organic light-emitting device (OLED), a finding expected to improve OLED"s emission efficiency, KAIST authorities said on Thursday (July 9). For surface plasmon localization, silver nanoparticles were thermally deposited in a high vacuum on cathode. Since plasmons provide a strong oscillator decay channel, time-resolved photoluninescene (PL) results displayed a 1.75-fold increased emission rate, and continuous wave PL results showed a twofold enhanced intensity. "The method using surface plasmon represents a new technology to enhance the emission efficiency of OLED. It is expected to greatly contribute to the development of new technologies in OLED and flexible display, as well as securing original technology," Prof. Choi said. The finding was published in the April issue of Applied Physics Letters and the June 25 issue of Optics Express. It will be also featured as the research highlight of the August issue of Nature Photonics and Virtual Journal of Ultrafast Science.
2009.07.09
View 20662
Lecture Hall Named After Venture Businessman Min-Hwa Lee
A lecture hall in the Alumni Start-Up Building on the KAIST campus was named Min-Hwa Lee Hall in a ceremony on Tuesday to pay tribute to KAIST alumnus Min-Hwa Lee"s contributions to the development of Korean venture business. On hand at the ceremony were Sung-Woo Hong, head of the Small and Medium Business Administration, KAIST President Nam-Pyo Suh, dozens of KAIST alumni representatives, and figures from government research institutes. Lee, who obtained his M.S. (1978) and Ph.D. (1985) in Electrical Engineering from KAIST, established a fund of 10 billion won along with other KAIST alumni in 2001 and donated it for the construction of the Alumni Start-Up Building for aspiring entrepreneurs. To remember his lofty vision, KAIST decided to name a lecture hall after him. As a venture businessman, Lee founded the Madison, Ltd., one of the earliest venture companies in Korea, in 1985. Lee then played a leading role in the creation of the Korea Venture Industry Association in 1995, and in the establishment of KOSDAQ and the enactment of a special law for venture enterprises. KAIST will appoint Lee as an adjunct professor in recognition of his expertise in venture business and commercialization of new inventions. Lee will teach entrepreneurship at the Graduate School of Management and the Institute for Gifted Students, a KAIST affiliate. "Dr. Lee has made a great contribution to the development of Korean venture business. At a time when commercialization of new inventions was at an infant stage, he nurtured technology ventures and built the foundation for the proliferation of technology venture," President Suh said. "We expect that he will strive to open the generation of technologies which will lead the development of Korea in the future and become a mentor of aspiring entrepreneurs," Suh added.
2009.06.30
View 15550
KAIST to hold International Workshop on Flexible Displays
The 2009 KAIST International Workshop on Flexible Displays will take place at the Electrical Engineering Building on June 25, university sources said on Tuesday (June 23). The workshop organized by the Center for Advanced Flexible Display Convergence (CAFDC) will explore the status and future vision of flexible and transparent plasma displays, which are among the key technologies for the development of the next-generation displays. There will be also discussions about technologies to realize the large-scale flexible and transparent display which is regarded as the display of the future. Among the speakers are some of the most prominent figures in the field. Gary Eden from University of Illinois, Prof. Kunihide Tachibana from Kyoto University, and Carol Wedding, the president of Imaging Systems Tech., USA and several other well-known professors and engineers will participate in the workshop. Professor Kyung-Cheol Choi, CAFDC chair, said: "The workshop will provide an excellent opportunity to examine the flexible and transparent plasma display technologies. It will also be a good chance to explore large-scale flexible and transparent displays from various technical viewpoints."
2009.06.24
View 18539
Prof. Cho's Team Awarded Best Paper Prize by IEEE
A team led by Prof. Seong-Hwan Cho of the School of Electrical Engineering and Computer Science, KAIST, won the 2009 Guillemin-Cauer Best Paper Award for their paper published in the IEEE Transactions on Circuits and Systems Journal last May, university authorities said on Thursday (June 4). The team"s paper was entitled "A Time-based Bandpass ADC Using Time-Interleaved Voltage-Controlled Oscillators." The prize is given to a paper regarded as the best among about 350 papers published in the prestigious journal in the circuit theory area. Co-recipients of the award are Young-Gyu Yoon, Jae-Wook Kim and Tae-Kwang Jang. The award was presented at the annual 2009 International Symposium for Circuits and Systems in Taipei, Taiwan, on May 26. The Institute of Electrical and Electronics Engineers or IEEE is an international non-profit, professional organization for the advancement of technology related to electricity. The New York-based organization has more than 365,000 members in about 150 countries making it the largest technical professional organization in the world.
2009.06.05
View 14002
International News Outlets Report on KAIST's On-Line Electric Vehicle Project
International news agencies such as the Associated Press and Reuters have recently reported on the "online" electric vehicle project KAIST is proceeding with. A number of newspapers abroad including the New York Times and the South China Morning Post of Hong Kong published the articles. Following are excerpts from those reports. ------------------- S. Koreans designing "online" electric vehicles By JEAN H. LEE Associated Press Urban visionaries in London and Seoul, two of the world"s busiest capital cities, foresee buses gliding through their streets with speed, ease and efficiency _ without emitting the exhaust fumes that scientists say are contributing to global warming.Under Mayor Boris Johnson"s vision, London"s iconic red double-decker Routemaster buses would be back on the streets _ but powered by electricity, not gasoline. Engineers at South Korea"s top-ranked KAIST university are meanwhile working on a novel prototype for an electric vehicle system: one that provides power on the go through induction strips laid into the roadway. Cities _ which house 75 percent of the world"s population and generate 80 percent of its pollution _ must take leadership in tackling the problem of polluting emissions, Johnson said Monday in Seoul on the eve of the third C40 Large Cities Climate Summit. "I think as a collective of cities, what we should be doing here in Seoul is agreeing that we are going to stop the endless addiction of mankind to the internal combustion engine," he told reporters. "It"s time that we moved away from fossil fuels. It"s time that we went for low-carbon vehicles." "Cars form many problems that we see in Korea as well as other countries. We use hydrocarbon organic fuels, mostly petroleum, and that, in turn, creates environmental problems _ and Seoul is notorious," said Suh Nam-pyo, president of KAIST in Daejeon, south of the South Korean capital. Seoul, population 10 million, is getting warmer three times faster than the world average, the National Meteorological Administration said Monday. The obvious solution, Suh said, is to "replace all these vehicles with vehicles that do not pollute the air and do not use oil." Back in March, Johnson zipped down a British highway in a U.S.-made electric car that he wrote marked "the beginning of a long-overdue revolution." He rhapsodized in a Telegraph newspaper editorial that the Tesla has no exhaust pipe, carburetor or fuel tank, and "while every other car on that motorway was a-parping and a-puttering, filling the air with fumes and particulates, this car was producing no more noxious vapours than a dandelion in an alpine meadow." Last month, he launched an ambitious plan to get 100,000 electric cars onto the streets of London by 2015. He pushed for the creation of 25,000 charging stations and vowed to convert some 1,000 city vehicles to make London the "electric car capital of Europe." "The age of the diesel-emitting bus has got to be over in London," Johnson said. And scientists are still grappling with the massive, sensitive, costly and fast-depleting batteries that take the place of international combustion engines and gasoline. Electric cars run between 40 and 120 miles (60 to 200 kilometers) on one charge, and it takes anywhere from two to seven hours to fully recharge, said Christian Mueller of the IHS Global Insight consulting firm. "Everybody is frantically working on coming up with a viable electric car," he said from Frankfurt, Germany. Batteries "aren"t yet at a state where we can say they are cheap, they"re reliable and they"re easy to come by. They all still have their technical drawbacks," said Mueller, who specializes in electrics and electronics. Suh, an MIT-trained inventor with some 60 international patents to his name, approached the challenge from another angle. "Why not have power transmitted on the ground and pick it up without using mechanical contact?" he said in an interview in his office overlooking the staging grounds for the university"s electric cars. KAIST"s "online" vehicles pick up power from trips, or inverters, embedded into the road rather than transmitted through rails or overhead wires. A small battery, one-fifth the size of the bulky batteries typically used, would give the vehicle enough power for another 50 miles (80 kilometers), said Cho Dong-ho, the scientist in charge of the project. South Korea produces its own nuclear power, meaning it can produce a continuous supply of energy to fuel such a plan. President Lee Myung-bak, whose government gave KAIST $50 million for two major projects, including the "online" electric vehicle, took a spin in February. Online buses are running at the KAIST campus and will begin test runs soon on the resort island of Jeju. But Seoul, which has promised to set aside $2 million for the underground charging system, is within Suh"s sights. He said 9,000 gasoline-fueled buses now crisscross the capital, with 1,000 going out of commission each year. He envisions replacing those aging buses with electric models. Initial test runs are expected to take place this year. Mueller, the consultant, called it a creative approach with potential. "It sounds very intriguing; you don"t store your energy, you provide it on the go." he said. "The (battery) storage problem is overcome instantly. That would be a very intriguing way of doing it." ----------------------------- South Korea tries recharging road to power vehicles By Jon Herskovitz SEOUL (Reuters) - South Korea"s top technology university has developed a plan to power electric cars through recharging strips embedded in roadways that use a technology to transfer energy found in some electric toothbrushes. The plan, still in the experimental stage, calls for placing power strips about 20 cm (8 inches) to 90 cm (35 inches) wide and perhaps several hundred meters long built into the top of roads. Vehicles with sensor-driven magnetic devices on their underside can suck up energy as they travel over the strips without coming into direct contact. "If we place these strips on about 10 percent of roadways in a city, we could power electric vehicles," said Cho Dong-ho, the manager of the "online electric vehicle" plan at the Korea Advanced Institute of Science and Technology. The university has built a prototype at its campus in Daejeon, about 140 km (90 miles) south of Seoul, for electric-powered golf carts and is working on designs that would power cars and buses. The system that can charge several vehicles at once would allow electric cars and buses to cut down on their battery sizes or extend their ranges. The non-contact transfer of electricity, also called inductive charging, works by magnets and cables on the underside of the vehicle making a connection with the current in the recharging strip to receive power as they travel over it. It is employed in some brands of electric toothbrushes that are sealed and water resistant, which do not need to be plugged into anything but use a magnetic connection to receive energy while resting in a cradle. The recharging strips, which are attached to small electrical stations, would be laid in places such as bus lanes and the roads running up to intersections so that vehicles could power up where traffic slows down, Cho said. The system will be tested later this year for use in the bus systems of Seoul and other South Korea cities while some of the country"s automakers are also cooperating in the project. Unlike electric lines used for trams, vehicles do not need to be in constant contact with the strips and a person can touch the lines without receiving a shock. The system so far has proven safe to humans and machinery, Cho said. The cost of installing the system is an estimated 400 million won ($318,000) per kilometer of road. Electricity is extra.
2009.05.21
View 16052
International Workshop on Flexible Displays Held on Aug. 21-22
An international workshop on flexible displays will be held at KAIST on Aug. 21-22. The workshop organized by Center for Advanced Flexible Display Convergence (CAFDC) in KAIST is designed to share ideas on the latest research developments and explore future trends in organic displays. Organic displays made from organic light-emitting diode (OLED) materials have recently made a real impact in consumer electronics and emerged as one of the most important technologies in the development of next-generation flexible displays. "The workshop is expected to provide an important opportunity to showcase latest technological developments using organic light-emitting diode and examine them from the perspectives of the next-generation flexible display," said Dr. Kyung-Cheol Choi, KAIST professor of electrical engineering and computer science who heads the CAFDC. The event will feature some of the world-renowned scholars in organic display including Prof. Stephen R. Forrest of the University of Michigan, Prof. Bernard Kippelen of Georgia Tech, and Prof. Takao Someya of the University of Tokyo, as theme presenters. It will also draw a slew of domestic scholars in the industry and academia.
2008.08.22
View 15578
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 11