본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
AT
by recently order
by view order
High-resolution Atomic Imaging of Specimens in Liquid Observed by Transmission Electron Microscopes Using Graphene Liquid Cells
Looking into specimens in liquid at the atomic level to understand nanoscale processes so far regarded as impossible to witnessThe Korea Advanced Institute of Science and Technology (KAIST) announced that a research team from the Department of Materials Science and Engineering has developed a technology that enables scientists and engineers to observe processes occurring in liquid media on the smallest possible scale which is less than a nanometer. Professor Jeong Yong Lee and Researcher Jong Min Yuk, in collaboration with Professors Paul Alivisatos’s and Alex Zettl’s groups at the University of California, Berkeley, succeeded in making a graphene liquid cell or capsule, confining an ultra-thin liquid film between layers of graphene, for real-time and in situ imagining of nanoscale processes in fluids with atomic-level resolution by a transmission electron microscope (TEM). Their research was published in the April 6, 2012 issue of Science. (http://www.sciencemag.org/content/336/6077/61.abstract) The graphene liquid cell (GLC) is composed of two sheets of graphene sandwiched to create a sealed chamber where a platinum growth solution is encapsulated in the form of a thin slice. Each graphene layer has a thickness of one carbon atom, the thinnest membrane that has ever been used to fabricate a liquid cell required for TEM. The research team peered inside the GLC to observe the growth and dynamics of platinum nanocrystals in solution as they coalesced into a larger size, during which the graphene membrane with the encapsulated liquid remained intact. The researchers from KAIST and the UC Berkeley identified important features in the ongoing process of the nanocrystals’ coalescence and their expansion through coalescence to form certain shapes by imaging the phenomena with atomic-level resolution. Professor Lee said, “It has now become possible for scientists to observe what is happening in liquids on an atomic level under transmission electron microscopes.” Researcher Yuk, one of the first authors of the paper, explained his research work. “This research will promote other fields of study related to materials in a fluid stage including physical, chemical, and biological phenomena at the atomic level and promises numerous applications in the future. Pending further studies on liquid microscopy, the full application of a graphene-liquid-cell (GLC) TEM to biological samples is yet to be confirmed. Nonetheless, the GLC is the most effective technique developed today to sustain the natural state of fluid samples or species suspended in the liquid for a TEM imaging.” The transmission electron microscope (TEM), first introduced in the 1930s, produces images at a significantly higher resolution than light microscopes, allowing users to examine the smallest level of physical, chemical, and biological phenomena. Observations by TEM with atomic resolution, however, have been limited to solid and/or frozen samples, and thus it has previously been impossible to study the real time fluid dynamics of liquid phases. TEM imaging is performed in a high vacuum chamber in which a thin slice of the imaged sample is situated, and an electron beam passes through the slice to create an image. In this process, a liquid medium, unlike solid or frozen samples, evaporates, making it difficult to observe under TEM. Attempts to produce a liquid capsule have thus far been made with electron-transparent membranes of such materials as silicon nitride or silicon oxide; such liquid capsules are relatively thick (tens to one hundred nanometers), however, resulting in poor electron transmittance with a reduced resolution of only a few nanometers. Silicon nitride is 25 nanometers thick, whereas graphene is only 0.34 nanometers. Graphene, most commonly found in bulk graphite, is the thinnest material made out of carbon atoms. It has unique properties such as mechanical tensile strength, high flexibility, impermeability to small molecules, and high electrical conductivity. Graphene is an excellent material to hold micro- and nanoscopic objects for observation in a transmission electron microscope by minimizing scattering of the electron beam that irradiates a liquid sample while reducing charging and heating effects. ### Figure 1. Schematic illustration of graphene liquid cells. Sandwiched two sheets of graphene encapsulate a platinum growth solution. Figure 2. In-situ TEM observation of nanocrystal growth and shape evolution. TEM images of platinum nanocrystal coalescence and their faceting in the growth solution.
2012.04.23
View 12195
International workshop on healthcare technology to be held on campus, April 24, 2012
KAIST and the KTH Royal Institute of Technology (KTH), Sweden, host a joint workshop on healthcare technologies on Tuesday, April 24, at the LG Semicon Hall (N24). Open to the public, the workshop will proceed with presentations and discussions by participants from both institutions. Presentation topics and speakers are as follows: “Applied medical engineering, innovation from clinical problems” by Professor Lars-Åke Brodin, Dean of School of Technology and Health, KTH “ICT in healthcare” by Professor Björn-Erik Erlandsson, School of Technology and Health, KTH “Department of environmental physiology, human research in extreme environments” by Researcher Mikael Grönkvist, School of Technology and Health, KTH “Brain function imaging using high-resolution MRI technology” by Professor Hyun Wook Park, Department of Electrical Engineering, KAIST “Bioinstrumentation for healthcare and physical human robot interactions” by Professor Jung Kim, Division of Mechanical Engineering, KAIST “A portable high-resolution near-infrared spectroscopy system” by Professor Hyeon-Min Bae, Department of Electrical Engineering, KAIST “Lab-on-a-chip technologies for integrative bioengineering” by Professor Je-Kyun Park, Department of Bio and Brain Engineering, KAIST “The cytoskeleton in cancer and regulation by oncogenic signaling” by Professor David M. Helfman, Department of Biological Sciences, KAIST Professor Chang Dong Yoo, Associate Vice President of Office of Special Projects and Institutional Relations at KAIST, who organized the workshop, says “Aging population and health issues are driving the demand for more sophisticated medical devices, procedures, and most importantly, qualified scientists and engineers specialized in health-related fields. This joint workshop will be a great chance to share new ideas and develop joint research between two leading research-oriented universities in two countries.” Partially supported by LG Ericsson in Korea, the workshop is funded largely by the generous donation, made last June by a Swedish couple, to KAIST scholar exchange program. The couple (Rune Jonasson and Kerstin Jonasson) donated 70 million krona (about 11.8 billion Korean won) to KTH last year and requested that some portion of the sum be used for a scholar exchange program with KAIST. The wife of the couple, Kerstin Jonasson, participated in the Korean War as a nurse, and upon her wish for further development in Korea’s science and technology, KAIST and KTH decided to use the donation for research in the field of healthcare and for a post-doc researcher exchange program. KTH is a world-class university of Sweden and has produced numerous researchers for private enterprises, like Ericsson, and venture businesses. Since 1988, KTH offers a top notch program for information technology; the School of Information and Communication Technology is located in the Kista district, a vibrant cluster of information and communications technology industries in Sweden, and has taken on the crucial role of supplying personnel to the Kista Science Park as well as to academic-industrial cooperation. For any inquiries, please contact the International Relations Team at +82-42-350-2441 (email: jungillee@kaist.ac.kr).
2012.04.21
View 11437
KAIST signs strategic partnership with Global Techlink
On April 5th, KAIST signed an official strategic partnership with Global Techlink (GTL), an IP total service company that specializes in international patents and the technology trade, regarding the commercialization of technology (Tech-biz) at KAIST’s Munji Campus. Through this partnership, KAIST hopes to systematically manage not only patents and related technologies developed by the KAIST faculty, but also industrial developments based on business models. Until now, KAIST has concentrated on using its own human resources to transfer its patents and technologies to domestic companies. However, this agreement with GTL allows KAIST to target overseas tech-biz markets. GTL has agreed to help create, protect and strengthen patent rights stemming from KAIST’s research projects and ideas, as well as provide a unified management service extending from selling and licensing patents to venture incubation. KAIST’s vice-president of research, Professor Paik Kyung-Wook said that “We should protect patents developed by talented students and use them in the market to generate profit, but the fact of the matter is that universities do not have the necessary man power or know-how to do so”. He emphasized that this partnership with GTL will accelerate the global commercialization of technological assets developed by KAIST professors, students and researchers. Mr. Kim Jong-hyun, the president of Global Techlink, announced that GTL will provide KAIST’s outstanding intellectual property with a customized total consulting service based on the world’s largest and best technology database, which it monopolizes, and various other services. Also, using its network with global corporations and distributors, the veteran marketing specialists at GTL will support and carry out KAIST’s tech-biz, although the specifics are still being worked out.
2012.04.19
View 9038
Attosecond pulses measure ultrafast photoionization processes by Laser Focus World, April 12, 2012
Laser Focus World, a monthly magazine published since 1965 that covers news and business developments on laser, photonics, and optoelectronics technologies, applications, and markets, released a news article on the recent research result by Professor Chang-Hee Nam from the Department of Physics. For the article, please follow the link below: http://www.laserfocusworld.com/articles/2012/04/kaist-attosecond
2012.04.13
View 7972
10 Technolgies to Change the World in 2012: The Future Technology Global Agenda Council
The Future Technology Global Agenda Council which is under the World Economy Forum and which KAIST’s biochemical engineering department’s Prof. Sang Yeob Lee is the head of, chose the 10 new technologies that will change the world in year 2012. The ten technologies include: IT, synthetic biology and metabolic engineering, Green Revolution 2.0, material construction nanotechnology, systematic biology and the simulation technology of biological systems, the technology to use CO2 as a natural resource, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology. The technologies were chosen on the basis of the opinions various science, industry, and government specialists and is deemed to have high potential to change the world in the near future. The Future Technology Global Agenda Council will choose ten new technologies yearly starting this year in order to solve the problems the world now faces. The informatics systems that was ranked 1st place, sifts only the data necessary for decision making out of the overflowing amount of data. Much interest has been spurred at the Davos forum. The synthetic biology and metabolic engineering chosen is expected to play an important role in creating new medicines and producing chemical substances and materials from reusable resources. Biomass has also been chosen as one of the top ten most important technologies as it was seen to be necessary to lead the second Green Revolution in order to stably provide food for the increasing population and to create bio refineries. Nanomaterials structured at the molecular level are expected to help us solve problems regarding energy, food, and resources. Systematic biology and computer modeling is gaining importance in availing humans to construct efficient remedies, materials, and processes while causing minimum effects on the environment, resource reserves, and other people. The technology to convert CO2, which is considered a problem all over the world, into a useful resource is also gaining the spotlight Together with such technologies, wireless power transmission technology, high density energy power system, personalized medical/nutritional/disease preventing system, and new education technology are also considered the top ten technologies to change the world. Prof. Lee said, “Many new discoveries are being made due to the accelerating rate of technological advancements. Many of the technologies that the council has found are sustainable and important for the construction of our future.”
2012.04.04
View 11474
Inexpensive Separation Method of Graphene Developed
The problem with commercializing graphene that is synthesized onto metals over a wide area is that it can not be separated from the metal. However, a groundbreaking separation technology which is both cheap and environment friendly has been developed. Prof. Taek soo Kim and Prof. Byung Jin Cho"s research teams have conducted this research under the support of the Global Frontier program and Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research results have been posted on the online news flash of Nano Letters on februrary 29th. (Thesis title: Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process) The research has generated exact results on the interfacial adhesive energy of graphene and its surface material for the first time. Through this, the catalyst metal are no longer to be used just once, but will be used for an infinite number of times, thereby being ecofriendly and efficient. Wide area graphine synthesized onto the catalyst meatal are used in various ways such as for display and for solar cells. There has been much research going on in this field. However, in order to use this wide area graphene, the graphene must be removed from the catalyst metal without damage. Until now, the metal had been melted away through the use of chemical substances in order to separate the graphene. However, this method has been very problematic. The metal can not be reused, the costs are very high, much harmful wastes were created in the process of melting the metals, and the process was very complicated. The research teams of Professors Taek Su Kim and Byung Jin Cho measured the interfacial adhesive energy of the synthesized graphene and learned that it could be easily removed. Also, the mechanically removed graphene was successfully used in creating molecular electronic devices directly. This has thus innovatively shortened the graphene manufacturing process. Also, it has been confirmed that the metalic board can be reused multiple times after the graphene is removed. A new, ecofriendly and cost friendly method of graphene manufacturing has been paved. Through this discovery, it is expected that graphene will become easier to manufacture and that the period til the commercialization date of graphene will therefore be greatly reduced Prof. Cho stated " This reserach has much academical meaning significance in that it has successfully defined the surfacial adhesive energy between the graphene and its catalyst material and it should receive much attention in that it solved the largest technical problem involved in the production of graphene.
2012.04.04
View 14071
New Era for Measuring Ultra Fast Phenomena: Atto Science Era
Domestic researchers successfully measured the exact status of the rapidly changing Helium atom using an atto second pulse. Thanks to this discovery, many ultrafast phenomena in nature can now be precisely measured. This will lead to an opening of a new "Atto Science" era. Prof. Nam Chang Hee led this research team and Ph.d Kim Kyung Taek and Prof. Choi Nak Ryul also participated in this research. They have conducted the research under the support of the Researcher Support Program initiated by The Ministry of Education and Science and Korea Research Foundation. The research result was published in the prestigious journal "Physical Review Letters" on March 2nd. (Title: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics) Prof. Nam Chang Hee"s research team used atto second pulse to measure the ultrafast photoionization. His team used atto second X-ray pulse and femto second laser pulse to photoionize Helium atoms, and measure the wave speed of the produced electron to closely investigate the ultrafast photoionization process. Atom"s photoionization measurement using an atto second pulse was possible using the research team"s high-energy femto second laser and high-performance photo ion measurement device. This research team succeeded in producing the shortest 60 atto second pulse in the world using high-harmonic waves. The research team used high-power femto second laser to produce atto second high-harmonic pulse from argon gas, used this to photoionize Helium atoms, and measured the ultrafast photoionization of the atoms. Prof. Nam Chang Hee said, "This research precisely measured the exact status of rapidly changing Helium atoms. I am planning to research on measuring the ultrafast phenomena inside atoms and molecules and controlling the status of the atoms and molecules based on the research result."
2012.04.04
View 10656
Creation of Synthetic Antibodies: Professor Hak Seong Kim
Synthetics antibodies which can replace antibodies from humans used as ingredients of medicines have been developed. It can increase the costs to 1/100 of the current costs and is much easier to develop. It is expected that the development period will be shortened from 10 years to 5. Prof. Hak Seong Kim from the Biology department of KAIST conducted a joint research with Prof. Dong Seob Kim to reconstruct proteins and has succeeded. The synthetic antibody displays much strength in terms of its productivity, structural formation, and bonding capability, and is thus regarded as an ideal protein. It can replace the antigens that are currently in use. It is expected that Korea will therefore be able to lead the world market for protein medicines which is a 192trillion won industry. The original antibody has been used for not only treating diseases, but also for various other applications in the fields of medical sciences and biology. However, it is produced through a very complex process involving the incubation of animal cells, and is therefore very expensive. Also, most antibodies are already patented by more developed countries, so a high royalty fee must be paid. Because of this, many countries including Korea has been concentrating on developing biosimilars copying the antibody medicines for which the patents have already expired. This causes Korea to be behind in the development of antibody protein pharmaceuticals. Prof. Kim’s research team has focused on the face that the protein existing in some eels are not antibodies but functions as one, and has been successful in developing a synthetic antibody. The synthetic antibody can be mass produced from the colon bacillus, which allows it to be produced at 1/100 the original cost. It is in a module structure which allows the structuring of the antibody into the desired structure, enabling it to be developed into a protein-based medicine within 5 years. Together with this, the coherence with the important antigens can be easily controlled, thus allowing for highly effective treatments, less side-effects, high security regarding heat and pH, and the immunogen levels being negligeable. This suggests a very high rate of the antibody being converted into a protein based medication. The synthetic antibody technology has been tested as a sample for the cure for lung diseases and rheumatism and has been proven to be appropriate. Animal testing will be conducted soon. Prof Kim said “The original antibodies had a small area allowing the bonding with antibodies, creating barriers for raising bonding strength and structuring. The newly created antibody carries only the strengths and will become a new protein based medicine purely created by Korean technology to replace the antibodies currently used in medications.” Furthermore, he added that, “The synthesized antibody structuring and designing technology will be widely used in the areas of detecting, diagnosing, and analyzing diseases.” At the same time, this research result has been published in the Feb 10th issue of the PNAS, and has been supported by the future promising pioneer business program held by the Ministry of Education and Technology.
2012.04.04
View 11246
Paving the Way to Next Generation Display
A new type of LCD that does not require polymer orientation films has been developed by researchers within the country. This technology will enable the creation of thiner and higher definition display. Prof. Hee Tae Jung form KAIST’s biochemical engineering department led the research and Hyun Soo Jung, Hwan Jin Jeon doctoral students (1st co-authors), Doctor Yun Ho Kim from Korea Chemistry Research Center, and Prof. Shin Woong Kang from Jeon Buk University ( co-author) have participated in this research. This research has been funded by the WCU program and middle-grade researcher support program. The results of the research has been published as the online update of ‘‘Nature Asia Materials(NPG Asia Materials)” which is a sister magazine of the world renowned academic magazine ‘Nature’. The flat display industry is the core industry leading the 21st century’s IT industry. The LCD is the main area of research. Korea is the leader of this industry, holding more than 50% of the world market. Many technologies are combined to make the electro-optic devices of the LCD function. The most important technology, which determines the indicating element’s quality and function is the technology to align the liquid crystals in one direction. Currently, all LCD products are created by mechanically cutting into the surface of the polymer film and orienting the liquid crystal material along these cuts. However, the creation of polymer orientation films cost much time and money, and the high temperature processes necessary to stabilize the polymers does not allow for the free selection of circuit boards, and thus does not allow for the use in flexible display. Prof. Hee Tae Jung devised a method to orient liquid display without the use of a polymer film using ITOs. Prof. Jung’s base technology has been tested on ITOs to maintain the necessary transparency and conductivity after forming a pattern with high decomposition rates and slenderness ratios. The technology developed by the research team can horizontally or vertically align the transparent conductors without the use of polymer orientation films. Thus, the manufacturing processes have become much shortened and the LCDs can be made in much thinner from a few micrometers to a few centimeters. Also, it has a lower functioning voltage and faster response speed, showing the prospects of a high definition ultra-fast screen display development. Furthermore, this technology can be used for any type of board, and can be adjusted to a nanometer scale. This enables for its use in LCD based flexible or multi-domain modes. Also, the transparent conductor patterning technology devised by the research team can be used not only for displays, but also for touch panels with highly increased sensitivity. Prof. Jung said, “It was a long desire of the industry and academia to find a way to replace the polymer orientation film. This new technology does not need any polymer orientation films, and we can still use the original boards used for LCDs. This mean a lot to the industry. Also, this technology will increase the sensitivity of the touch panels for tablet PCs and smart phones. It can be used in many areas of future electronics base technology.”
2012.04.04
View 10837
Undergraduate Research Program, Putting Wings on Undergraduate"s Dreams
KAIST held the 2011 URP Research Result Presentation in the Creative Learning Center on the 17th. Four students Jae Gyung Seo, Tran An Tu, Gun Sik Ahn, and Gyung Ryul Bong have been chosen as the grand prize winners. The grand prize winners receive 3.5million won to allow them to participate in an international academic conference. The URP program is the first of its kind in Korea and has been benchmarked from MIT’s UROP(Undergraduate Research Opportunity Program). The school selects 60 individual and 20 team research projects for undergraduates twice a year and provides mentorship as well as financial support. Students signing up for the URP are to submit research plans and are then chosen through looking at these documents. Students receive 6 months of research funds and are to work under a professor and TA in groups of 2 to 3 or individually. The URP program which is funded by the Ministry of Science and Technology has settled in successfully and has been expanded to the entire country. The head of the R&D team, Yong Jae Sung, stated, “The number of research plans have been 154 in 2008, 189 in 2009, 220 and 251 respectively in 2010 and 2011. It’s continuously rising. And over 80% of responses on satisfaction surveys have replied that students were satisfied. It is very popular among undergraduates.“ Student Sang Yeon Cho has also said, “I was able to research on everything that I wanted under funding of the school and the guidance of renowned professors thanks to the URP program.” To Seul Gi Lee, a graduate student for the electrical engineering department who has developed the wearable sleeping pattern analysis system, URP is an especially special program. She said, “I successfully researched in the wearable health care field as my URP research material in 2006 when I was in my junior year. I made second place. After this, I have continued my research in this field on SoC(System on Chip) for wearable healthcare in graduate school and will be receiving my doctorate degree on the 24h.” Doctor Seul Gi Lee has been recognized in the field of wearable healthcare for her research and has been hired as a researcher in the Holst Centre which is a national research center funded by the Netherlands’ government. She will continue to research on measuring and analyzing biological readings.
2012.04.04
View 10506
NPKI Launch Workshop Held
Molecular Physics Department Expected to Have ‘NPKI’ Launch Workshop - Numerous physicists tracking the god-particle ‘Higgs’ attending- The NPKI: New Physics at Korea Institute which was launched a six day workshop in Shinla Hotel, Seoul with 50 physicists from in and out of the country. The event started with Professor Gi Woon Choi’s welcoming speech. A heated debate with the theme ‘Top physics and electroweak symmetry breaking in the LHC era’ took place in the event. NPKI was created this year to search into the most fundamental workings of nature, research the meaning of such mechanisms, and share this knowledge with not only the general public, but also with the teenagers who wish to someday become physicists. Professor Gi Woon Choi from KAIST, Professors Byoung Wong Ko and Eung Jin Jeon from the Advanced Science Institute, and more are participated in this workshop from Korea. From abroad, world renowned professors such as Prof. Csaba Csaki from Cornell, Prof. Christophe Grojean from CERN, Prof. Erez Etzion from Tel Aviv University of Israel, and Prof. Zoltan Ligeti from UC Berkley participated in this event. The ‘Seeds Program’ took place. This is a program where 20 high school and middle school students aspiring to become physicists were able to attend the work shop without any due fee to experience the world of physicists. The students chosen for the program were able to attend the conference to watch debates of real physicists as well as experience the academic lives of physicists. They were also able to attend the lecture conducted by Prof. Gilad Perez from CERN and were granted question and answer sessions as well. The workshop was hosted by NPKI, and sponsored by Shinla Hotel, BK21 KAIST Physics, department of physics of KAIST, department of physics in Seoul National University, the Advanced Science Institute, and the Center for Quantum Spacetime
2012.04.04
View 13041
University World News, EU and South Korea agree to deepen research cooperation, April 1, 2012
The University World News, an online news site that focuses on the news and analysis, developments, and events and announcements of global higher education, published an article on the latest agreement made between South Korea and the European Union for the research collaboration of the universities in the two nations. For the article, please go to http://www.universityworldnews.com/article.php?story=2012040108141720. University World News EU and South Korea agree to deepen research cooperation By David Howarth, April 1, 2012
2012.04.02
View 9918
<<
첫번째페이지
<
이전 페이지
81
82
83
84
85
86
87
88
89
90
>
다음 페이지
>>
마지막 페이지 120