Six disciplines of KAIST have emerged among the top 20 in the world. The 2017 QS World University Rankings by Subject rated Materials Science at KAIST 13th in the global ranking. Other subjects ranked within top 20 include Chemical and Biomolecular Engineering (15th), Civil and Environmental Engineering (15th), Mechanical and Aerospace Engineering (15th), Electrical Engineering (17th), and Chemistry (18th). This year, two more disciplines advanced into the top 20 from four in 2016.
QS ranked KAIST as the top science and technology research university in Korea. KAIST earned the highest global rankings among Korean universities in the following seven areas: Materials Science and Engineering (13th), Chemical and Biomolecular Engineering (15th), Civil and Environmental Engineering (15th), Mechanical and Aerospace Engineering (15th), Electrical Engineering (17th), Chemistry (18th), and the School of Computing (33th). In addition, two more disciplines of Physics (44th) and Mathematical Sciences (47th) were ranked second among domestic universities.
The London-based university ranking by Quacquarelli Symonds, Ltd. announced the global university ranking by 46 subjects on March 8. QS rankings are based on academic reputation, employer reputation, the number of research citations, and research accomplishment index (H-index).
KAIST (President Kwang Hyung Lee) is leading the transition to AI Transformation (AX) by advancing research topics based on the practical technological demands of industries, fostering AI talent, and demonstrating research outcomes in industrial settings. In this context, KAIST announced on the 13th of August that it is at the forefront of strengthening the nation's AI technology competitiveness by developing core AI technologies via national R&D projects for generative AI led by the Minis
2025-08-13<ID-style photograph against a laboratory background featuring an OLED contact lens sample (center), flanked by the principal authors (left: Professor Seunghyup Yoo ; right: Dr. Jee Hoon Sim). Above them (from top to bottom) are: Professor Se Joon Woo, Professor Sei Kwang Hahn, Dr. Su-Bon Kim, and Dr. Hyeonwook Chae> Electroretinography (ERG) is an ophthalmic diagnostic method used to determine whether the retina is functioning normally. It is widely employed for diagnosing hereditary
2025-08-12< (From left) Ph.D candidate Wonho Zhung, Ph.D cadidate Joongwon Lee , Prof. Woo Young Kim , Ph.D candidate Jisu Seo > Traditional drug development methods involve identifying a target protin (e.g., a cancer cell receptor) that causes disease, and then searching through countless molecular candidates (potential drugs) that could bind to that protein and block its function. This process is costly, time-consuming, and has a low success rate. KAIST researchers have developed an AI model th
2025-08-12<(From left)Professor Jimin Park, Ph.D candidate Myeongeun Lee, Ph.D cadidate Jaewoong Lee,Professor Jihan Kim> Cells use various signaling molecules to regulate the nervous, immune, and vascular systems. Among these, nitric oxide (NO) and ammonia (NH₃) play important roles, but their chemical instability and gaseous nature make them difficult to generate or control externally. A KAIST research team has developed a platform that generates specific signaling molecules in situ from a si
2025-08-12<Photo1. Group photo at the end of the program> KAIST (President Kwang Hyung Lee) announced on the 11thof August that it successfully hosted the 'APEC Youth STEM Conference KAIST Academic Program,' a global science exchange program for 28 youth researchers from 10 countries and over 30 experts who participated in the '2025 APEC Youth STEM* Collaborative Research and Competition.' The event was held at the main campus in Daejeon on Saturday, August 9. STEM (Science, Technology, Eng
2025-08-11