본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
College+of+Natural+Sciences
by recently order
by view order
Biomimetic Carbon Nanotube Fiber Synthesis Technology Developed
The byssus of the mussel allows it to live in harsh conditions where it is constantly battered by crashing waves by allowing the mussel to latch onto the seaside rocks. This particular characteristic of the mussel is due to the unique structure and high adhesiveness of the mussel’s byssus. KAIST’s Professor Hong Soon Hyung (Department of Material Science and Engineering) and Professor Lee Hae Shin (Department of Chemistry) and the late Professor Park Tae Kwan (Department of Bio Engineering) were able to reproduce the mussel’s byssus using carbon nanotubes. The carbon nanotube, since its discovery in 1991, was regarded as the next generation material due to its electrical, thermal, and mechanical properties. However due to its short length of several nanometers, its industrial use was limited. The KAIST research team referred to the structure of the byssus of the mussel to solve this problem. The byssus is composed of collagen fibers and Mefp-1 protein which are in a cross-linking structure. The Mefp-1 protein has catecholamine that allows it to bind strongly with the collagen fiber. In the artificial structure, the carbon nanotube took on the role of the collagen fibers and the macromolecular adhesive took on the role of the catecholamine. The result was a fiber that was ultra-light and ultra-strong. The results of the experiment were published in the Advanced Materials magazine and is patent registered both domestically and internationally.
2011.06.20
View 13007
From Pencil Lead to Batteries: the Unlimited Transformation of Carbon
Those materials, like lead or diamond, made completely up of Carbon are being used in numerous ways as materials or parts. Especially with the discovery of carbon nanotubes, graphemes, and other carbon based materials in nanoscale, the carbon based materials are receiving a lot of interest in both fields of research and industry. The carbon nanotubes and graphemes are considered as the ‘dream material’ and have a structure of a cross section of a bee hive. Such structure allows the material to have strength higher than that of a diamond and still be able to bend, be transparent and also conduct electricity. However the problem up till now was that these carbon structures appeared in layers and in bunches and were therefore hard to separate to individual layers or tubes. Professor Kim Sang Wook’s research team developed the technology that can assemble the grapheme and carbon nanotubes in a three dimensional manner. The team was able to assemble the grapheme ad carbon nanotubes in an entirely new three dimensional structure. In addition, the team was able to efficiently extract single layered grapheme from cheap pencil lead. Professor Kim is scheduled to give a guest lecture in the “Materials Research Society” in San Francisco and the paper was published in ‘Advanced Functional Materials’ magazine as an ‘Invited Feature Article’.
2011.05.11
View 11420
The 40th Anniversary of the Establishment of KAIST Commemoration Held
KAIST, aspiring to become the best Science and Technology University, has turned 40. KAIST held the commemoration ceremony for the 40th Anniversary of the Establishment of KAIST in the auditorium. Five awards (Scholar, Creative Lecture, Excellence in Lecture, International Cooperation, Experiment) were given to Professors Kim Eun Jun and Walton Jones (department of Biology), Professor Abigail Shin (department of Humanities and Social Sciences), Professor Shin Seong Chul (department of Physics), and Professor Lee Sang Yeop (department of Biological Chemical Engineering). Each recipient received a prize of five million won. Professor Song Joon Hwa (department of Computer Sciences) received the ‘New Knowledge Award’ in recognition of his development of the Orchestrator Mobile platform. The new platform is different from Android or the IOS platform in that it allows a fluid relationship to be formed between the smartphone and the user. KAIST also showed off its new emblem. The emblem consists of a star which represents the KAIST’s goals of becoming the world leader, of training leaders, the center point, and hope. The main keywords are: ‘Leadership’, ‘Premium’, ‘Scientific’, and ‘Humanity’. KAIST plans on having various events from May 9th when there will be the Vision Declaration.
2011.02.21
View 14543
"Supersolidity flows back," Nature, September 2, 2010
Supersolidity, discovered for the first time in 2004 by two physicists—one of them is Professor Eun-Seong Kim from the Department of Physics, KAIST—was discussed once again in the September 2, 2010 issue of Nature, an internationally well-known science journal. The article mentioned “supersolidity” as one of the rare examples of quantum effects on a macroscopic scale, together with “superconductivity” and “superfluidity.” The phenomenon of supersolidity was evidenced by Professor Kim and his colleague through an experiment of placing helium-4 in a torsional oscillator under a low temperature. The phenomenon, however, has been in debate among scientists in the physics community since the discovery, and Professor Kim has recently released his research results to further support his claim. For the full article, please click the link below: http://www.nature.com/news/2010/100902/full/news.2010.443.html.
2010.09.08
View 9999
Science News Issued on September 11, 2010: A matter of solidity
Science News, a bi-weekly news magazine of the Society for Science & the Public, published an extensive article on the issue of “supersolidity” discovered in helium-4. Professor Eun-Seong Kim of the Physics Department, KAIST, is one of the scientists who discovered the phenomenon through an experiment of solid helium using a device called a torsional oscillator. For the entire article, please click the link of http://www.sciencenews.org/view/feature/id/62642/title/A_matter_of_solidity.
2010.09.02
View 10914
Nanowire crystal transformation method was newly developed by a KAIST research team.
Figure 1 Schematic illustration of NW crystal transformation process. FeSi is converted to Fe3Si by high-temperature thermal annealing in diluted O2 condition and subsequent wet etching by 5% HF. Figure 2 Low-resolution TEM images of FeSi; Fe3Si@SiO2 core—shell; Fe3Si NW after shell-etching; and Scale bars are 20 nm Professor Bongsoo Kim of the Department of Chemistry, KAIST, and his research team succeeded to fabricate Heusler alloy Fe3Si nanowires by a diffusion-driven crystal structure transformation method from paramagnetic FeSi nanowires. This methodology is also applied to Co2Si nanowires in order to obtain metal-rich nanowires (Co) as another evidence of the structural transformation process. The newly developed nanowire crystal transformation method, Professor Kim said, would be valuable as a general method to fabricate metal-rich silicide nanowires that are otherwise difficult to synthesize. Metal silicide nanowires are potentially useful in a wide array of fields including nao-optics, information technology, biosensors, and medicine. Chemical synthesis of these nanowires, however, is challenging due to the complex phase behavior of silicides. The metal silicide nanowires are grown on a silicon substrate covered with a thin layer of silicon oxide via a simple chemical vapor deposition (CVD) process using single or multiple source precursors. Alternatively, the nanowires can be grown on the thin silicon oxide film via a chemical vapor transport (CVT) process using solid metal silicide precursors. The CVT-based method has been highly effective for the syntheses of metal silicide NWs, but changing the composition of metal silicide NWs in a wider range, especially achieving a composition of a metal to silicon, has been quite difficult. Thus, developing efficient and reliable synthetic methods to adjust flexibly the elemental compositions in metal silicide NWs can be valuable for the fabrication of practical spintronic and neonelectronic devices. Professor Kim expliained, “The key concept underlying this work is metal-enrichment of metal silicide NWs by thermal diffusion. This conversion method could prove highly valuable, since novel metal-rich silicide NWs that are difficult to synthesize but possess interesting physical properties can be fabricated from other metal silicide NWs.” The research result was published in Nanao Letters, a leading peer-reviewed journal, and posted online in early August 2010.
2010.08.25
View 11518
The 6th president of KAIST passed away on May 7, 2010.
Dr. Sang-Soo Lee was the first president of Korea Advanced Institute of Science (KAIS) and the 6th president of KAIST, who died of a chronic disease at the age of 85. The KAIS was the matrix of KAIST today. Graduated from the physics department of Seoul National University in 1949, he later received a doctoral degree in optics from Imperial College of Science and Technology, University of London. Dr. Lee has greatly contributed to the development of science and technology in Korea in the capacity of a policy administrator, educator, scientist, researcher, and engineer. He held numerous prestigious offices including President of Korea Atomic Energy Research Institute in 1967, of KAIS in 172, and of KAIST in 1989. Dr. Lee also worked as a professor at the physics department of KAIST for 20 years from 1972-1992. The Society of Photographic Instrumentation Engineers (SPIE), an international society for optics and photonics, was founded in 1955 to advance light-based technologies. Dr. Sang-Soo Lee was a member of the SPIE that issued a news release expressing its sincere condolences to his death. The following is the full text of the news release: http://spie.org/x40527.xml In memoriam: Sang Soo Lee 10 May 2010 Sang Soo Lee, known as the "Father of Optics" in Korea passed away on May 7, 2010, in Korea. He was 84. Lee received a B.S. in Physics from Seoul National University in Korea and a Ph.D. from Imperial College of Science and Technology, University of London, UK. Receiving the first Ph.D. in Optics in Korea, Dr. Lee devoted his life to lay the foundation for optical science and engineering for more than four decades as an educator, researcher, and administrator in science policy. "He was one of the architects of the extraordinary and rapid emergence of Korea as a world leader in science and technology, or perhaps with the rich history of contributions centuries ago, re-emergence would be more appropriate." said Eugene G. Arthurs, SPIE Executive Director. During his teaching career, Dr. Lee mentored 50 doctoral and more than 100 masters" degree candidates. in the areas of laser physics, wave optics, and quantum optics. Many of his former students have become leaders in academia, government-funded research institutes, and industry both in Korea and abroad. He published more than 250 technical papers and authored five textbooks, including "Wave Optics", "Geometrical Optics", "Quantum Optics", and "Laser Speckles and Holography". Lee was the first president of the Korea Advanced Institute of Science and Technology (KAIST), and the first president to establish a new government funded graduate school. He played a pivotal role in founding the Optical Society of Korea (OSK) in 1989 and served as its first president. Lee was an active member of the international scientific community. In addition to his pioneering scholastic achievements at KAIST, he served as the Vice President of the International Commission for Optics (ICO), a Council Member of the Third World Academy of Sciences, and a Council Member of UN University, serving as an ambassador for the optics community, which showed a significant example of how a developing country like Korea can serve international optics community. Dr. Lee was a Fellow of the International Society for Optical Engineering (SPIE), the Optical Society of America (OSA), and the Korean Physical Society (KPS). He was the recipient of many awards and honors, including the National Order of Civil Merit that is the Presidential Medal of Honor from the Republic of Korea (2000), the Songgok Academic Achievement Prize, the Presidential Award for Science, and the Medal of Honor for Distinguished Scientific Achievement in Korea. In 2006, he was awarded OSA"s Esther Hoffman Beller Medal.
2010.05.19
View 14158
Professor Eun-Seong Kim and his research staff observed the phenomena of hysteresis and relaxation dynamics from supersolid Helium
Professor Eun-Seong Kim and his research staff observed the phenomena of hysteresis and relaxation dynamics from supersolid Helium. Their research paper was published in Nature Physics for the issue of April 2010. If we take Helium 4 and cool it down at temperatures below 2.176 Kelivin, liquid helium 4 undergoes a phase transition and becomes superfluid with a zero viscosity. The superfluidity was observed in solid helium through an experiment performed by researchers of Pennsylvania State University in 2004. One of the researchers then was Professor Eun-Seong Kim in the Department of Physics, KAIST. Professor Kim and his research staff, Hyung-Soon Choi, Ph.D., recently published their research results in Nature Physics (April 2010), a highly esteemed journal in the field, on the phenomena of hysteresis and relaxation dynamics observed in supersolid Helium. For the paper, please download the attached .pdf file. Nature Physics link: http://www.nature.com
2010.04.13
View 12980
New Text Book on Chemistry Published by KAIST Professor and Student
A chemistry textbook written in English and Korean will aid Korean students to learn General Chemistry in a global academic setting. Korean students majoring in chemistry and looking for an opportunity to study abroad will have a new, handy textbook that presents them with a practical introduction to an English speaking lecture on general chemistry. Aiming for advanced Korean high school and college/university students, the inter-language textbook is written by two incumbent professors teaching chemistry at a university in Korea and the US. The book will help Korean students prepare for a classroom where various topics of general chemistry are presented and discussed in English. Clear, collated sections of English and Korean text provide the student with sufficient explanation of the rudimentary topics and concepts. Composed of 15 chapters on the core subjects of General Chemistry, i.e., Stoichiometry and Chemical Reactions, Thermochemistry, Atomic Structure, and Bonding, the textbook includes essential English vocabulary and usage sections for each chapter; it also contains a pre-reading study guide on the subject that prepares the student for listening to a lecture. This section includes view-graph type slides, audio files, and follow-up questions the student can use to prepare for an English-speaking course. The various accompanying audio files are prepared to expose the student to English scientific dialogue and serve as examples for instruction at Korean secondary and tertiary schools. The book was coauthored by Korean and American scientists: A father and son, who have taught chemistry at an American and Korean university, wrote the book. Professor Melvyn R. Churchill at the State University of New York at Buffalo and Professor David G. Churchill at KAIST prepared all of the technical English text which was adapted from General Chemistry course lecture notes; the text was further shaped by original perspectives arising from many student interactions and questions. This English text was translated into Korean by Professor Kwanhee Lee from the Department of Life and Food Science at Handong Global University, who coauthored a previous preparatory book for Korean students in a different subject. He also supplied an important introductory section which serves as a general guide to the classroom student. Kibong Kim, a doctoral student in the Department of Chemistry at KAIST, helped in preparing the book as well. “This has been definitely a collaborative undertaking with an international academic crew and it underscores that the Korean internationalization in science is mainstream. Professors and a Korean student created a new book for Korean consumption and benefit,” Professor David G. Churchill says. ---------------------------------------------------------------------------------------- Bibliography: “How to Prepare for General Chemistry Taught in English” by David George Churchill, Melvyn Rowen Churchill, Kwanhee Lee & Kibong Kim, Darakwon Publishing, Paju, Republic of Korea, 2010, 400 pp, ISBN 978-89-5995-730-9 (1 Audio CD included)
2010.04.02
View 14953
Prof. Ryoo's Team Discovers Breakthrough Method to Create New Zeolite
A group of scientists led by Prof. Ryong Ryoo of the Department of Chemistry, KAIST, has found a method to direct the growth of zeolite, a crystalline substance that is frequently used as catalyst in the chemical and petrochemical industries, the university authorities said on Thursday (Sept. 10). Ryoo"s research team successfully created ultrathin nano-sheets, only two nano-meters thick, that are efficiently used as long-life catalysts for hydrocarbon cracking and other petrochemical applications. The breakthrough finding, which is credited with taking acidic zeolite catalysts to the limit in terms of thickness, was published in the latest edition of the peer-review journal, "Nature." A team from the Polytechnic Univeristy of Valencia, Spain, also contributed to the research. Zeolites are already widely used in the petrochemical industry, but making the catalysts very thin means that reactant molecules can easily diffuse into the zeolite structure and product molecules can get out quickly. This improves the efficiency of the catalyst and reduces unwanted side reactions that can produce polymeric hydrocarbon "coke" that clogs the zeolite pores and eventually kills the catalytic activity, Prof. Yoo said. To make the thin sheets, Ryoo and his team used a surfactant as a template to direct the growth of the zeolite structure. The surfactant molecule has a polar "head" group - with two quaternary ammonium groups around which the aluminosilicate zeolite crystal grows - and a long hydrocarbon "tail," which prevents the sheets from aggregating together into larger, three dimensional crystals. When the surfactant is removed, these flakes pile up randomly with gaps in between which further aids diffusion to the catalyst sites. "Zeolite could be used as a catalyst to convert heavy oil into gasoline. Our new zeolite could provide even more possibilities, such as being used as catalysts for transforming methanol into gasline," Ryoo said. Prof. Ryoo, a Distinguished Professor of KAIST, has won a variety of academic awards, which included the Top Scientist Award given by the Korean government in 2005 and the 2001 KOSEF Science and Technology Award for his work on the synthesis and crystal structure of mezzoporous silica. Ryoo obtained his bachelor"s degree from Seoul National University in 1977, master"s from KAIST in 1979, and doctorate from Stanford University in 1985. In 2006, Ryoo and his research team announced the discovery of a form of zeolite that can catalyze petrochemical reactions much more effectively than previous zeolites. Because of the potential of this to streamline the gasoline refining process, it was greeted as a "magical substance" by the South Korean press.
2009.09.11
View 12633
Scaling Laws between Population and Facility Densities Found
A research team led by Prof. Ha-Woong Jeong of the Department of Physics, KAIST, has found a positive correlation between facilities and population densities, university authorities said on Tuesday (Sept. 2). The research was conducted in the cooperation with a research team of Prof. Beom-Jun Kim at Sungkyunkwan University. The researchers investigated the ideal relation between the population and the facilities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, the relation between population and facilities should follow a simple law. The new empirical analysis, however, determined that the law is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy, the researchers proposed a model based on economic mechanism that mimics the competitive balance between the profit of the facilities and the social opportunity cost for population. The results were published in the Proceedings of the National Academy of Sciences of the United States on Aug. 25.
2009.09.04
View 13291
Prof. Song Develops Nano-Structure to Enhance Power of Rechargeable Lithium-ion Battery
A team of scientists led by Prof. Hyun-Joon Song of the Department of Chemistry, KAIST, developed a nano-structure that could increase the power of rechargeable lithium-ion batteries, university sources said on Monday (Feb. 16). The research team found that a nano-structured material using copper oxide (CuO) could produce lithium-ion batteries with some 50 percent more capacity than conventional products. The study was published in the online edition of peer-review journal Advanced Materials. In rechargeable lithium-ion batteries, lithium ions move between the battery"s anode and cathode. The high-energy density of the batteries led to their common use in consumer electronics products, expecially portable devices. Their demand in automotive and aerospace applications is growing, and nano-structured, or nano-enabled batteries are emerging as the new generation of lithium-ion batteries for their edge in recharging time, capacity and battery life. Graphite has been a popular material for cathodes in lithium-ion batteries. However, graphite cathodes are also blamed for lost capacity due to their consumption of lithium ions, which are linked to shorter battery life. As such, scientists have been looking for materials that could replace graphite in cathodes, and silicon and metal oxide have been studied as possible alternatives.
2009.02.17
View 12115
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9