본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
TE
by recently order
by view order
Graduate School of Culture and Technology Begins Mobile Science Classroom
KAIST Graduate School of Culture and Technology plans visits to elementary schools without the facilities to facilitate hands on science education. The Graduate School of Culture and Technology planned the ‘STEAM Creative Camp’ involving three elementary schools during the summer holidays. The ‘STEAM Creative Camp’ involves increasing interest and artistic sensitivity through experience based science education. The program is composed of two separate programs in consideration to the level of participating students. The beginner level program includes: code making, writing secret letters, sticker decorating program and the moderate level program includes: making wipers using complex pulley system, catapult design using elasticity, and puppet show using joints to animate. The programs will be taught by masters and doctorate program candidates from the KAIST Youth Culture and Technology Experience Center. *STEAM: And integrated education system including Science, Technology, Engineering, Arts, and Mathematics.
2012.07.26
View 8241
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 14123
Systems biology demystifies the resistance mechanism of targeted cancer medication
Korean researchers have found the fundamental resistance mechanism of the MEK inhibitor, a recently highlighted chemotherapy method, laying the foundation for future research on overcoming cancer drug resistance and improving cancer survival rates. This research is meaningful because it was conducted through systems biology, a fusion of IT and biotechnology. The research was conducted by Professor Gwang hyun Cho’s team from the Department of Biology at KAIST and was supported by the Ministry of Education, Science and Technology and the National Research Foundation of Korea. The research was published as the cover paper for the June edition of the Journal of Molecular Cell Biology (Title: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor). Targeted anticancer medication targets certain molecules in the signaling pathway of the tumor cell and not only has fewer side effects than pre-existing anticancer medication, but also has high clinical efficacy. The technology also allows the creation of personalized medication and has been widely praised by scientists worldwide. However, resistances to the targeted medication have often been found before or during the clinical stage, eventually causing the medications to fail to reach the drug development stage. Moreover, even if the drug is effective, the survival rate is low and the redevelopment rate is high. An active pathway in most tumor cells is the ERK (Extracellular signal-regulated kinases) signaling pathway. This pathway is especially important in the development of skin cancer or thyroid cancer, which are developed by the mutation of the BRAF gene inside the path. In these cases, the MEK (Extracellular signal-regulated kinases) inhibitor is an effective treatment because it targets the pathway itself. However, the built-up resistance to the inhibitor commonly leads to the redevelopment of cancer. Professor Cho’s research team used large scale computer simulations to analyze the fundamental resistance mechanism of the MEK inhibitor and used molecular cell biological experiments as well as bio-imaging* techniques to verify the results. * Bio-imaging: Checking biological phenomena at the cellular and molecular levels using imagery The research team used different mutational variables, which revealed that the use of the MEK inhibitor reduced the transmission of the ERK signal but led to the activation of another signaling pathway (the PI3K signaling pathway), reducing the effectiveness of the medication. Professor Cho’s team also found that this response originated from the complex interaction between the signaling matter as well as the feedback network structure, suggesting that the mix of the MEK inhibitor with other drugs could improve the effects of the targeted anticancer medication. Professor Cho stated that this research was the first of its kind to examine the drug resistivity against the MEK inhibitor at the systematic dimension and showed how the effects of drugs on the signaling pathways of cells could be predicted using computer simulation. It also showed how basic research on signaling networks can be applied to clinical drug use, successfully suggesting a new research platform on overcoming resistance to targeting medication using its fundamental mechanism.
2012.07.06
View 10445
The hereditary factor of autism revealed
Korean researchers have successfully investigated the causes and hereditary factors for autistic behavior and proposed a new treatment method with fewer side effects. This research was jointly supported by the Ministry of Education, Science and Technology and the National Research Foundation as part of the Leading Researcher and Science Research Center Program The research findings were publishing in the June edition of Nature magazine and will also be introduced in the July edition of Nature Reviews Drug Discovery, under the title ‘Autistic-like social behavior in Shank2-mutant mice improved by restoring NMDA receptor function’. The research team found that lack of Shank2 genes in mice, which are responsible for the production of synapse proteins, caused autistic-like behavior. The results strongly suggested that the Shank2 gene was linked to autistic behavior and that Shank2 deficiency induced autistic behaviors. Autism is a neural development disorder characterized by impaired social interaction, repetitive behavior, mental retardation, anxiety and hyperactivity. Around 100 million people worldwide display symptoms of autistic behavior. Recent studies conducted by the University of Washington revealed that 1 out of 3 young adults who display autistic behavior do not fit into the workplace or get accepted to college, a much higher rate than any other disorder. However, an effective cure has not yet been developed and current treatments are limited to reducing repetitive behavior. The research team confirmed autistic-like social behavior in mice without the Shank2 genes and that the mice had decreased levels of neurotransmission in the NMDA receptor. The mice also showed damaged synaptic plasticity* in the hippocampus**. * Plasticity: ability of the connectionbetween two neurons to change in strength in response to transmission of information **Hippocampus: part of the brain responsible for short-term and long-term memory as well as spatial navigation. The research team also found out that, to restore the function of the NMDA receptor, the passive stimulation of certain receptors, such as the mGLuR5, yielded better treatment results than the direct stimulation of the NMDA. This greatly reduces the side effects associated with the direct stimulation of receptors, resulting in a more effective treatment method. This research successfully investigated the function of the Shank2 gene in the nerve tissue and showed how the reduced function of the NMDA receptor, due to the lack of the gene, resulted in autistic behavior. It also provided new possibilities for the treatment of autistic behavior and impaired social interaction
2012.06.24
View 10762
President Nam Pyo Suh receives Honorary Doctorate from Bilkent University, Turkey
President of KAIST Nam Pyo Suh received an Honorary Doctorate from Turkey’s Bilkent University on June 13th, 2012. Bilkent University revealed that it is President Suh’s invention of a plastic manufacture process used all over the world and the combination of academic achievements like the creation of the axiomatic design theory that merits the Honorary Doctorate. After the presentation ceremony, President Suh gave a lecture to professors and students at Bilkent University on the "University of the Future: Changing Education Paradigm." Bilkent University is located in Ankara, the capital of Turkey and was established in 1984, which is largely regarded as Turkey’s best private university. It ranked 32 out of 50 universities in Times Higher Educations’ 100 Under 50 List of World’s Best New Universities.
2012.06.18
View 8381
ICISTS-KAIST: Korea's Largest Scale University Student International Conference
An entirely student led and planned international conference will be held at KAIST. KAIST student club ICISTS will be holding the ‘ICISTS-KAIST 2012’ conference from the 6th of August till the 10th of August. This is the 8th annual conference which started in 2005 which is planned and executed entirely by undergraduate students. The conference aims at examining the rapidly changing relationship between science and technology and society and actively debate on the matter. The 1st conference involved only 150 students of which only a few from abroad. However last year’s conference involved 300 students from 22 nations from all over the world. The keyword of the conference in the much talked about ‘integration’ and therefore aims at establishing interdisciplinary networks that go beyond background and borders. Not only does ‘ICISTS-KAIST’ involves panel talks by speakers, but also offers small scale lectures simultaneously which allows participants to attend talks that suit their individual preferences. Group discussion session between participants and speakers will be held along with various performances and booths to introduce Korean traditional culture to international participants. The theme of this year’s conference is “Age of Integration: Beyond the Borders of Knowledge”. It is comprised of 3 smaller conferences with themes of Art and Science, Natural Sciences and Social Sciences, and Science and Technology and Human Society. This year’s conference will host lectures by Professor S. Shyam Sundar of Pennsylvania State Communication University, Professor Bruce E. Seely Dean of Michigan School of Engineering, and Professor Shin Hui Seop who was named as the ‘1st National Scientist’ in 2005. Registration ends on the 15th of July and more information can be found at www.icists.org.
2012.06.18
View 8015
Successful Development of Excavation System of Biomarkers containing Protein Decomposition Control Enzyme Information
A Korean team of researchers successfully developed a biomarker excavation system named E3Net that excavates biomarkers containing information of the enzymes that control the decomposition of proteins. The development of the system paved the possibility of development of new high quality biomarkers. *Biomarker: Molecular information of unique patterns derived from genes and proteins that allow the monitoring of physical changes from genetic or environmental causes. Professor Lee Kwan Soo’s team (Department of Biological Sciences) composed of Doctorate candidate Han Young Woong, Lee Ho Dong Ph.D. and Professor Park Jong Chul published a dissertation in the April edition of Molecular and Cellular Proteomics. (Dissertation Title: A system for exploring E3-mediated regulatory networks of cellular functions). Professor Lee’s team compiled all available information of the enzyme that controls protein decomposition (E3 enzyme) and successfully compiled the inter-substrate network by extracting information from 20,000 biology related data base dissertations. The result was the development of the E3Net system that analyzes the related cell function and disease. Cells have a system that produces, destroys, and recycles proteins in response to the ever changing environmental conditions. Error in these processes leads to disease. Therefore finding the relationship between E3 enzymes that control the decomposition of proteins and the substrates will allow disease curing and prevention to become much easier. E3 enzyme is responsible for 80% of the protein decomposition and is therefore predicted to be related to various diseases. However the information on E3 enzyme and inter-substrate behavior are spread out among numerous dissertations and data bases which prevented methodological analysis of the role of the related cells and characteristics of the disease itself. Professor Lee’s team was successful in creating the E3Net that compiled 2,201 pieces of E3 substrate information, 4,896 pieces of substrate information, and 1,671 pieces of inter-substrate relationship information. This compilation allows for the systematic analysis of cells and diseases. The newly created network is 10 times larger than the existing network and is the first case where it is possible to accurately find the cell function and related diseases. It is anticipated that the use of the E3Net will allow the excavation of new biomarkers for the development of personalized drug systems. The research team applied the E3Net to find tens of new candidate biomarkers related to the major modern diseases like diabetes and cancer.
2012.05.30
View 11705
Production of chemicals without petroleum
Systems metabolic engineering of microorganisms allows efficient production of natural and non-natural chemicals from renewable non-food biomass In our everyday life, we use gasoline, diesel, plastics, rubbers, and numerous chemicals that are derived from fossil oil through petrochemical refinery processes. However, this is not sustainable due to the limited nature of fossil resources. Furthermore, our world is facing problems associated with climate change and other environmental problems due to the increasing use of fossil resources. One solution to address above problems is the use of renewable non-food biomass for the production of chemicals, fuels and materials through biorefineries. Microorganisms are used as biocatalysts for converting biomass to the products of interest. However, when microorganisms are isolated from nature, their efficiencies of producing our desired chemicals and materials are rather low. Metabolic engineering is thus performed to improve cellular characteristics to desired levels. Over the last decade, much advances have been made in systems biology that allows system-wide characterization of cellular networks, both qualitatively and quantitatively, followed by whole-cell level engineering based on these findings. Furthermore, rapid advances in synthetic biology allow design and synthesis of fine controlled metabolic and gene regulatory circuits. The strategies and methods of systems biology and synthetic biology are rapidly integrated with metabolic engineering, thus resulting in "systems metabolic engineering". In the paper published online in Nature Chemical Biology on May 17, Professor Sang Yup Lee and his colleagues at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea present new general strategies of systems metabolic engineering for developing microorganisms for the production of natural and non-natural chemicals from renewable biomass. They first classified the chemicals to be produced into four categories based on whether they have thus far been identified to exist in nature (natural vs. nonnatural) and whether they can be produced by inherent pathways of microorganisms (inherent, noninherent, or created): natural-inherent, natural-noninherent, non-natural-noninherent, and non-natural-created ones. General strategies for systems metabolic engineering of microorganisms for the production of these chemicals using various tools and methods based on omics, genome-scale metabolic modeling and simulation, evolutionary engineering, synthetic biology are suggested with relevant examples. For the production of non-natural chemicals, strategies for the construction of synthetic metabolic pathways are also suggested. Having collected diverse tools and methods for systems metabolic engineering, authors also suggest how to use them and their possible limitations. Professor Sang Yup Lee said "It is expected that increasing number of chemicals and materials will be produced through biorefineries. We are now equipped with new strategies for developing microbial strains that can produce our desired products at very high efficiencies, thus allowing cost competitiveness to those produced by petrochemical refineries." Editor of Nature Chemical Biology, Dr. Catherine Goodman, said "It is exciting to see how quickly science is progressing in this field – ideas that used to be science fiction are taking shape in research labs and biorefineries. The article by Professor Lee and his colleagues not only highlights the most advanced techniques and strategies available, but offers critical advice to progress the field as a whole." The works of Professor Lee have been supported by the Advanced Biomass Center and Intelligent Synthetic Biology Center of Global Frontier Program from the Korean Ministry of Education, Science and Technology through National Research Foundation. Contact: Dr. Sang Yup Lee, Distinguished Professor and Dean, KAIST, Daejeon, Korea (leesy@kaist.ac.kr, +82-42-350-3930)
2012.05.23
View 11648
KAIST hosts the first Can Satellite (Cansat) competition
Figure: The cansat is sent up into the air using a balloon and then separated at a certain height. The cansat slowly descends and sends terrestrial observation or atmospheric information back to earth. KAIST will host the first ever Cansat Competition Korea, in which students from different age groups can participate in building and testing the performance of their custom satellites. The Satellite Technology Research Center (SaTReC) at KAIST announced that it will take applications for the Cansat Competition Korea until May 25th. A cansat is a can-sized educational satellite that contains the basic elements of a real satellite. It is fired up to a few hundred meters in the air using balloons or small rockets and then separated like a real satellite, collecting data and sending the information back to earth. Cansat competitions are regularly held in the United States or Europe, where they have advanced space development programs, but this is the first time this competition will be held in Korea. The competition caters to different age groups through a cansat experience science camp for elementary and middle school students and a cansat competition for high school and college students. The science camp will be held from August 7th to 9th at KAIST and Sejong City and will include satellite education, visits to space development centers (KAIST Satellite Technology Research Center and the Korea Aerospace Research Institute), hand-on experience with basic cansat kits, and other various programs. The science camp will consist of a maximum of 20 teams comprised of students from fifth to ninth grade. Each team will have an advisory teacher and 3 to 4 students and can apply for the competition at no cost. The cansat competition will test high school and college students on their personally designed and built can satellites along with the creativity of their mission and developmental outcome. The preliminary review will choose a maximum of 15 teams, while the secondary review will select the 5 teams that will make the final competition based on their design presentation. On August 9th, these 5 teams will be evaluated on their technical ability, mission capacity and presentation skills. The winning team will be given the KAIST presidential award along with a trophy and prize money. Doctor Park from KAIST SaTReC explained that countries with advanced space technology actively support cansat competitions to expand the base of the field. He emphasized Korea’s need for regular cansat competitions to actively promote potential space researchers. More information on the competition can be found on the homepage (http://cansat.kaist.ac.kr) or at the KAIST SaTReC (042-350-8613~4)
2012.05.14
View 11411
Biomimetic reflective display technology developed
Professor Shin Jung Hoon The bright colors of a rainbow or a peacock are produced by the reflection and interference of light in transparent periodic structures, producing what is called a structural color. These colors are very bright and change according to the viewing angle. On the other hand, the wings of a morpho-butterfly also have structural colors but are predominantly blue over a wide range of angles. This is because the unique structure of the morpho-butterfly’s wings contains both order and chaos. Professor Shin Jung Hoon’s team from the Department of Physics and the Graduate School of Nanoscience and Technology at KAIST produced a display that mimics the structure of the morpho-butterfly’s wings using glass beads. This research successfully produced a reflective display (one that reflects external light to project images), which could be used to make very bright displays with low energy consumption. This technology can also be used to make anti-counterfeit bills, as well as coating materials for mobile phones and wallets. The structure of the morpho-butterfly’s wings seems to be in periodic order at the 1-micrometer level, but contains disorder at the 100-nanometer level. So far, no one had succeeded in reproducing a structure with both order and disorder at the nanometer level. Professor Shin’s team randomly aligned differently sized glass beads of a few hundred nanometers to create chaos and placed a thin periodic film on top of it using the semiconductor deposition method, thereby creating the morpho-butterfly-like structure over a large area. This new development produced better color and brightness than the morpho-butterfly wing and even exhibited less color change according to angle. The team sealed the film in thin plastic, which helped to maintain the superior properties whilst making it more firm and paper-like. Professor Shin emphasized that the results were an exemplary success in the field of biomimetics and that structural colors could have other applications in sensors and fashion, for example. The results were first introduced on May 3rd in Nature as one of the Research Highlights and will be published in the online version of the material science magazine, Advanced Materials. This research was jointly conducted by Professor Shin Jung Hoon (Department of Physics / Graduate School of Nanoscience and Technology at KAIST), Professor Park NamKyoo (Department of Electrical and Computer Engineering at Seoul National University), and Samsung Advanced Institute of Technology. The funding was provided by the National Research Foundation of Korea and the Ministry of Education, Science and Technology as part of the World Class University (WCU) project. Figure 2. The biomimetic film can express many different colors Figure 3. The biomimetic diplay and a morpho-butterfly
2012.05.07
View 13346
The output of terahertz waves enhanced by KAIST team
KAIST researchers have greatly improved the output of terahertz waves, the blue ocean of the optics world. This technology is expected to be applied to portable X-ray cameras, small bio-diagnostic systems, and in many other devices. Professor Ki-Hun Jeong"s research team from the Department of Bio and Brain Engineering used optical nano-antenna technology to increase the output of terahertz waves by three times. Terahertz waves are electromagnetic waves with frequencies between 100GHz to 30THz. They are produced when a femtosecond (10^-15 s) pulse laser is shone on a semiconductor substrate with photoconduction antennas, causing a photocurrent pulse of one picosecond (10^-12 s). Their long wavelengths, in comparison to visible light and infrared rays, give terahertz waves a high penetration power with less energy than X-rays, making them less harmful to humans. These qualities allow us to see through objects, just as X-rays do, but because terahertz waves absorb certain frequencies, we can detect hidden explosives or drugs, which was not possible with X-rays. We can even identify fake drugs. Furthermore, using the spectral information, we can analyze a material"s innate qualities without chemical processing, making it possible to identify skin diseases without harming the body. However, the output was not sufficient to be used in biosensors and other applications. Prof. Jeong"s team added optical nano-antennas, made from gold nano-rods, in between the photoconduction antennas and optimized the structure. This resulted in nanoplasmonic resonance in the photoconduction substrate, increasing the degree of integration of the photocurrent pulse and resulting in a three times larger output. Hence, it is not only possible to see through objects more clearly, but it is also possible to analyze components without a biopsy. Professor Jeong explained, "This technology, coupled with the miniaturization of terahertz devices, can be applied to endoscopes to detect early epithelial cancer" and that he will focus on creating and commercializing these biosensor systems. This research was published in the March issue of the international nanotechnology journal ACS Nano and was funded by the Korea Evaluation Institute of Industrial Technology and the National Research Foundation of Korea. Figure: Mimetic diagram of a THz generator with nano-antennas
2012.04.29
View 11242
International workshop on healthcare technology to be held on campus, April 24, 2012
KAIST and the KTH Royal Institute of Technology (KTH), Sweden, host a joint workshop on healthcare technologies on Tuesday, April 24, at the LG Semicon Hall (N24). Open to the public, the workshop will proceed with presentations and discussions by participants from both institutions. Presentation topics and speakers are as follows: “Applied medical engineering, innovation from clinical problems” by Professor Lars-Åke Brodin, Dean of School of Technology and Health, KTH “ICT in healthcare” by Professor Björn-Erik Erlandsson, School of Technology and Health, KTH “Department of environmental physiology, human research in extreme environments” by Researcher Mikael Grönkvist, School of Technology and Health, KTH “Brain function imaging using high-resolution MRI technology” by Professor Hyun Wook Park, Department of Electrical Engineering, KAIST “Bioinstrumentation for healthcare and physical human robot interactions” by Professor Jung Kim, Division of Mechanical Engineering, KAIST “A portable high-resolution near-infrared spectroscopy system” by Professor Hyeon-Min Bae, Department of Electrical Engineering, KAIST “Lab-on-a-chip technologies for integrative bioengineering” by Professor Je-Kyun Park, Department of Bio and Brain Engineering, KAIST “The cytoskeleton in cancer and regulation by oncogenic signaling” by Professor David M. Helfman, Department of Biological Sciences, KAIST Professor Chang Dong Yoo, Associate Vice President of Office of Special Projects and Institutional Relations at KAIST, who organized the workshop, says “Aging population and health issues are driving the demand for more sophisticated medical devices, procedures, and most importantly, qualified scientists and engineers specialized in health-related fields. This joint workshop will be a great chance to share new ideas and develop joint research between two leading research-oriented universities in two countries.” Partially supported by LG Ericsson in Korea, the workshop is funded largely by the generous donation, made last June by a Swedish couple, to KAIST scholar exchange program. The couple (Rune Jonasson and Kerstin Jonasson) donated 70 million krona (about 11.8 billion Korean won) to KTH last year and requested that some portion of the sum be used for a scholar exchange program with KAIST. The wife of the couple, Kerstin Jonasson, participated in the Korean War as a nurse, and upon her wish for further development in Korea’s science and technology, KAIST and KTH decided to use the donation for research in the field of healthcare and for a post-doc researcher exchange program. KTH is a world-class university of Sweden and has produced numerous researchers for private enterprises, like Ericsson, and venture businesses. Since 1988, KTH offers a top notch program for information technology; the School of Information and Communication Technology is located in the Kista district, a vibrant cluster of information and communications technology industries in Sweden, and has taken on the crucial role of supplying personnel to the Kista Science Park as well as to academic-industrial cooperation. For any inquiries, please contact the International Relations Team at +82-42-350-2441 (email: jungillee@kaist.ac.kr).
2012.04.21
View 10612
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 109