본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ES
by recently order
by view order
Bioengineers develop a new strategy for accurate prediction of cellular metabolic fluxes
A team of pioneering South Korean scientists has developed a new strategy for accurately predicting cellular metabolic fluxes under various genotypic and environmental conditions. This groundbreaking research is published in the journal Proceedings of the National Academy of Sciences of the USA (PNAS) on August 2, 2010. To understand cellular metabolism and predict its metabolic capability at systems-level, systems biological analysis by modeling and simulation of metabolic network plays an important role. The team from the Korea Advanced Institute of Science and Technology (KAIST), led by Distinguished Professor Sang Yup Lee, focused their research on the development of a new strategy for more accurate prediction of cellular metabolism. “For strain improvement, biologists have made every effort to understand the global picture of biological systems and investigate the changes of all metabolic fluxes of the system under changing genotypic and environmental conditions,” said Lee. The accumulation of omics data, including genome, transcriptome, proteome, metabolome, and fluxome, provides an opportunity to understand the cellular physiology and metabolic characteristics at systems-level. With the availability of the fully annotated genome sequence, the genome-scale in silico (means “performed on computer or via computer simulation.”) metabolic models for a number of organisms have been successfully developed to improve our understanding on these biological systems. With these advances, the development of new simulation methods to analyze and integrate systematically large amounts of biological data and predict cellular metabolic capability for systems biological analysis is important. Information used to reconstruct the genome-scale in silico cell is not yet complete, which can make the simulation results different from the physiological performances of the real cell. Thus, additional information and procedures, such as providing additional constraints (constraint: a term to exclude incorrect metabolic fluxes by restricting the solution space of in silico cell) to the model, are often incorporated to improve the accuracy of the in silico cell. By employing information generated from the genome sequence and annotation, the KAIST team developed a new set of constraints, called Grouping Reaction (GR) constraints, to accurately predict metabolic fluxes. Based on the genomic information, functionally related reactions were organized into different groups. These groups were considered for the generation of GR constraints, as condition- and objective function- independent constraints. Since the method developed in this study does not require complex information but only the genome sequence and annotation, this strategy can be applied to any organism with a completely annotated genome sequence. “As we become increasingly concerned with environmental problems and the limits of fossil resources, bio-based production of chemicals from renewable biomass has been receiving great attention. Systems biological analysis by modeling and simulation of biological systems, to understand cellular metabolism and identify the targets for the strain improvement, has provided a new paradigm for developing successful bioprocesses,” concluded Lee. This new strategy for predicting cellular metabolism is expected to contribute to more accurate determination of cellular metabolic characteristics, and consequently to the development of metabolic engineering strategies for the efficient production of important industrial products and identification of new drug targets in pathogens.”
2010.08.05
View 12335
Native-like Spider Silk Produced in Metabolically Engineered Bacterium
Microscopic picture of 285 kilodalton recombinant spider silk fiber Researchers have long envied spiders’ ability to manufacture silk that is light-weighted while as strong and tough as steel or Kevlar. Indeed, finer than human hair, five times stronger by weight than steel, and three times tougher than the top quality man-made fiber Kevlar, spider dragline silk is an ideal material for numerous applications. Suggested industrial applications have ranged from parachute cords and protective clothing to composite materials in aircrafts. Also, many biomedical applications are envisioned due to its biocompatibility and biodegradability. Unfortunately, natural dragline silk cannot be conveniently obtained by farming spiders because they are highly territorial and aggressive. To develop a more sustainable process, can scientists mass-produce artificial silk while maintaining the amazing properties of native silk? That is something Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, the Republic of Korea, and his collaborators, Professor Young Hwan Park at Seoul National University and Professor David Kaplan at Tufts University, wanted to figure out. Their method is very similar to what spiders essentially do: first, expression of recombinant silk proteins; second, making the soluble silk proteins into water-insoluble fibers through spinning. For the successful expression of high molecular weight spider silk protein, Professor Lee and his colleagues pieced together the silk gene from chemically synthesized oligonucleotides, and then inserted it into the expression host (in this case, an industrially safe bacterium Escherichia coli which is normally found in our gut). Initially, the bacterium refused to the challenging task of producing high molecular weight spider silk protein due to the unique characteristics of the protein, such as extremely large size, repetitive nature of the protein structure, and biased abundance of a particular amino acid glycine. “To make E. coli synthesize this ultra high molecular weight (as big as 285 kilodalton) spider silk protein having highly repetitive amino acid sequence, we helped E. coli overcome the difficulties by systems metabolic engineering,” says Sang Yup Lee, Distinguished Professor of KAIST, who led this project. His team boosted the pool of glycyl-tRNA, the major building block of spider silk protein synthesis. “We could obtain appreciable expression of the 285 kilodalton spider silk protein, which is the largest recombinant silk protein ever produced in E. coli. That was really incredible.” says Dr. Xia. But this was only step one. The KAIST team performed high-cell-density cultures for mass production of the recombinant spider silk protein. Then, the team developed a simple, easy to scale-up purification process for the recombinant spider silk protein. The purified spider silk protein could be spun into beautiful silk fiber. To study the mechanical properties of the artificial spider silk, the researchers determined tenacity, elongation, and Young’s modulus, the three critical mechanical parameters that represent a fiber’s strength, extensibility, and stiffness. Importantly, the artificial fiber displayed the tenacity, elongation, and Young’s modulus of 508 MPa, 15%, and 21 GPa, respectively, which are comparable to those of the native spider silk. “We have offered an overall platform for mass production of native-like spider dragline silk. This platform would enable us to have broader industrial and biomedical applications for spider silk. Moreover, many other silk-like biomaterials such as elastin, collagen, byssus, resilin, and other repetitive proteins have similar features to spider silk protein. Thus, our platform should also be useful for their efficient bio-based production and applications,” concludes Professor Lee. This work is published on July 26 in the Proceedings of the National Academy of Sciences (PNAS) online.
2010.07.28
View 16727
The thermal fluctuation and elasticity of cell membranes, lipid vesicles, interacting with pore-forming peptides were reported by a research team at KAIST.
A research team from KAIST, consisted of Sung-Min Choi, Professor of Nuclear and Quantum Engineering Department, and Ji-Hwan Lee, a doctoral student in the Department, published a paper on the “thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides.” The paper was carried by Physical Review Letters, an internationally renowned peer-review journal on physics on July 16, 2010. Cell membranes, which consist of lipid bilayers, play important roles in cells as barriers to maintain concentrations and matrices to host membrane proteins. During cellular processes such as cell fission and fusion, the cell membranes undergo various morphological changes governed by the interplay between protein and lipid membranes. There have been many theoretical and experimental approaches to understand cellular processes driven by protein-lipid membrane interactions. However, it is not fully established how the membrane elastic properties, which play an important role in membrane deformation, are affected by the protein-membrane interactions. Antimicrobial peptides are one of the most common examples of proteins that modify membrane morphology. While the pore-forming mechanisms of antimicrobial peptides in lipid bilayers have been widely investigated, there have been only a few attempts to understand the mechanisms in terms of membrane elastic properties. In particular, the effects of pore formation on the membrane fluctuation and elastic properties, which provide key information to understand the mechanism of antimicrobial peptide activity, have not been reported yet. The research team reports the thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides, which were measured by neutron spin-echo spectroscopy. The results of this study are expected to pay an important role in understanding the elastic behavior and morphological changes of cell membranes induced by protein-membrane interactions, and may provide new insights for developing new theoretical models for membrane fluctuations which include the membrane mediated interaction between protein patches. (a) (b) Figure (a) Schematics for bound melittin and pores in lipid bilayers (b) P NMR signal ratio (with/without Mn2+) of DOPC LUV-melittin vs P/L at 30˚C. The dashed line is a guide for eyes.
2010.07.23
View 11207
A stream of generous donations to KAIST continues to grow.
Yi-Won Oh is nothing but an ordinary person who lives in Seoul. Ever since retirement, she has looked into ways to donate her savings for a bigger cause that will benefit the people in need and the nation as a whole. On the inauguration day of President Nam Pyo Suh who took his second term in office, Ms. Oh joined the ceremony and pledged to donate her savings to KAIST, which amounted to 10 billion won. “I’ve always thought that the best way for our country to become a developed nation that lacks natural resources and has a small land is to develop science and technology by producing excellent manpower through a quality education. I talked to President Suh a couple of times, and we shared our common belief that the future of our nation hinges on the advancement of science and technology in Korea,” said Ms. Oh. She added, “I support for President Suh’s vision and leadership, who has brought reformative and innovative changes to KAIST. I have no doubt that KAIST will become a leading research university in the world and play an important role in the development of our nation. It is indeed my pleasure that I can make announcement to donate my money to KAIST on the day President Suh is assigned to lead such a distinguished university one more time.” KAIST plans to create and operate a fund dubbed “Yi-Won Oh Scholarship and Grant for Young Chair Professors.” Through the fund, talented students suffering financial difficulties and promising, young professors will have a richer opportunity to study and research.
2010.07.21
View 9234
International Center was built to promote greater exchanges and collaborations between the international community and KAIST.
On July 9, 2010, KAIST held an opening ceremony for the construction of International Center. The Center will serve as an internal and external liaison for the university, providing a source of assistance to faculty, administrators, and students on matters related to international activities and initiatives. It will also pursue greater exchanges and collaborations between the international community and KAIST. The facility accommodates various meetings, exhibitions, library, language services, and other amenities. The International Cooperation Team of KAIST will be moved into this building and provide a variety of services, such as immigration regulations, cultural adjustment, employment, to assist international students, scholars, faculty, and staff at KAIST, as well as Korean students seeking opportunities to study, work, or travel abroad. An international nursery school will also be inside the building so that foreign faculty and students with children can have convenience and quality child care while they are teaching or studying. At the center will be held many different kinds of international event—one among them is KAIST-ONE, a festival held twice a year in spring and fall to introduce and share culture, education, and food of the global community at KAIST.
2010.07.19
View 10818
Inauguration ceremony for the 14th President of KAIST held on July 14, 2010
President Nam Pyo Suh was sworn in as the 14th President of KAIST at an inauguration ceremony taken place on July 14, 2010. He has become the first incumbent president who succeeded to secure a second term in office. While vowing to continue to make his efforts in developing KAIST as one of the world’s leading science and technology universities, President Suh noted, in his inauguration address, that “over the past four years, KAIST has instituted many difficult and controversial policies and procedures, and as a result, the university has become more competitive and stronger for the future.” The president also laid out major goals of education policies and principles to be implemented in the next four years. The full text of the inauguration address follows below: ----------------------------------------------------------------- Inauguration Address Nam Pyo Suh The 14th President of KAIST July 14, 2010 Members of the KAIST family: Thank you for joining this illustrious gathering to commemorate the commencement of the 14th Presidency of KAIST. In many respects, this is the beginning of a new era for KAIST. Today, we march forward – more boldly, more confidently than perhaps ever before – in our mission to become one of the world’s leading science and technology universities. I am indeed honored – and humbled – to be leading this effort for KAIST. I do not take this responsibility lightly, and I would like to express my extreme gratitude to the many people who have given me their confidence and support, without which I would not be standing here today. In particular, I would like to thank the Chairman of KAIST Board of Trustees, Chung Moon Soul, for his guidance and unwavering support. He has been an inspirational leader for KAIST, and it has been my singular honor to learn from and work with him. I also would like to thank all the other members of the Board of Trustees, each of whom has provided thoughtful and productive advice and guidance. I would also like to thank Minister Ahn Byung Man, Vice Minister Kim Joong Hyun, Director Kim Young Sik and Director General Yoon Hun Ju for their support of KAIST and my reappointment as the President of KAIST. Their continuing support of KAIST has enabled KAIST to make major strides toward achieving its goal of becoming one of the best universities in the world. While this commencement signals a beginning, we are building upon a rich past. There are many who have admirably led and served KAIST since its birth in 1971. They achieved a great deal for the good of our beloved institution and for Korea. And thanks to the tremendous efforts of many here today, the past four years have been especially fruitful ones in KAIST’s history. Today, KAIST stands as one of the world’s major research universities. No other university outshines us in terms of the quality of professors, staff and students, financial support for faculty and students, and our physical infrastructure. KAIST has become an idea factory, where education and research co-mingle to create solutions and establish new paradigms that benefit humanity – both present and future. You can see this clearly in the intellectual vigor and “can-do” attitude that permeates our campus. In the field of research, our faculty, students, and staff have made seminal contributions to science and technology – contributions that will change the history of science and technology, and hence the way society functions and people think. In the field of education, our enhanced programs are empowering students with the ability to understand issues, analyze problems, and synthesize solutions. Our physical environment, which is key to the quality of education and research that KAIST provides, has also improved with many newly constructed and renovated buildings, thanks to the generous support of major donors from all around the world, the Korean government, and the Korean people. Today, scholars in a number of countries across five continents pay attention to what we do here at KAIST. We are indeed blazing new pathways in many fields that will guide the work of future generations of scientists and engineers. All this has not been achieved without sacrifice. Over the last four years, we have instituted many difficult and often controversial policies and procedures. I believe these have helped KAIST become more competitive and stronger for the future. But change affects people and institutions in both negative and positive ways. While these new policies have benefited some, I am acutely aware that they have, at the same time, caused discomfort and pain for others. To those who have suffered because of the changes that have been made during the past four years, I ask for your understanding and offer my sincere apologies. We must endeavor to minimize the negative consequences of transformation, as we strive mightily to realize our dreams for this great institution. To do so, we, as a community, must first redefine and recommit to common goals: First, we must arm our students with the ability to think both creatively and logically, to work collegially across cultures, and to lead wisely and with integrity. We must give our students the foundation to become players on the world stage, whether they become captains of industry, heads of state, or leading inventors and academics. Second, we must also support our professors as they impart their vast knowledge and experiences with students. We must also enable them to fulfill their aspirations to become the world’s leading scientists, engineers, and scholars. Third, we must direct KAIST’s energies toward addressing the most pressing problems of the 21st century. Let us not forget that we have a responsibility far greater than ourselves. Finally, we must execute all these undertakings well for the benefit of the Korean people, in whose service KAIST was established 40 years ago. It may now be the right time for us to assess our efforts over the last four years and set the course ahead. KAIST’s successes are largely due to our professors. They have made major discoveries and inventions, which have won them international awards and recognitions. They have received significant research grants and contracts from many government agencies and companies, which have enabled KAIST to make unique contributions. They have published outstanding research results in leading journals and obtained patents in many countries. These achievements have helped bolster KAIST’s global standing. KAIST professors have more opportunities to pursue research because our enviable financial structure provides the ideal balance between teaching and research. I can think of only a few other universities in the world that have such a situation. With these opportunities, we also have our share of challenges. One of the pressing challenges is to hire more professors, since 50 percent of our faculty will retire in 10 years. We will apply some of the gifts KAIST has received to create several junior chaired professorships to recruit promising talent. We also will work with the government to receive more faculty positions to prepare for the future. KAIST also has an outstanding group of staff members, who manages all phases of KAIST’s operations, including our relationships with government and industry. Their workload has been heavy, since we have undertaken many major research projects and innovative educational programs during the past four years. I salute the effort of our staff for the job well done. To reward exceptional performance, we must improve our personnel policies so that the most productive and creative staff members are recognized and promoted in a timely manner. Because of the achievements of our faculty and staff, the Korean people and friends abroad have responded with their support. Major gifts by Chairman Chung Moon Soul, the generosity of Dr. and Mrs. BJ Park, Chairman and Mrs. Neil Pappalardo, Dr. Lyu Keun Chul, Chairman and Mrs. Donald Kim, Chairman and Mrs. Kim Byung-Ho, Chairman and Mrs. Cho Chun-Sik, Chairman Bae Hwi-Yul, Chairman Lee Chong-Moon, Dr. Lim Hyung-Kyu, Chairman Lee Hak-Yong, Dr. Kang Baek-Hyun, Chairman Mr. Ahn Seung-Pil, Mr. Chung Seung-Ryul and his family, and thousands of other donors, including those who wish to remain anonymous, have made KAIST much more competitive. The number of donors has increased exponentially during the past four years to over 4,300 benefactors. On behalf of all members of the KAIST family, I say, “Thank you.” While KAIST is stronger than ever financially, we have a long way to go to be competitive with richer universities of the world. It is up to us to show that we deserve the continued support of the Korean people and our benefactors. We have almost completed the construction of seven new buildings and are about to start four more construction projects. While significant, KAIST still has many old buildings and facilities that require extensive maintenance. We must continue to raise the quality of KAIST’s infrastructure to support the groundbreaking research and teaching being undertaken in these buildings. Because we have neglected some of these buildings for so long, it will take a massive investment to renovate them. Not one of the accomplishments of the past four years could have been made without the world-class leadership of vice presidents, deans, directors, and department heads. They have worked day and night to lead our university. I am particularly indebted to Provost Chang Soon Heung, who has led all aspects of KAIST’s operations. Vice President Yang Jiwon has ably dealt with our relationship with government and external organizations. Vice President Kim Sang Soo has played a key role in establishing and operating the KAIST Institutes, including the construction of the Park KI Building. Vice President Kang Minho effectively led the integration of KAIST and ICU. Dean of Academic Affairs Lee Kwang Hyung has done a superb job of administering our academic programs. Dean of Students Paik Kyung Wook has successfully dealt with all matters pertaining to the well-being of students. Dean Im Yong Taek has been outstanding in all aspects of our relationship with outside organizations. Dean for Research Professor Yang Hyun Seung, Dean for Academic Information Yoon Hyun Soo, Dean for Admissions Kim Do Kyung, Dean for EEWS Lee Jae Kyu, and Dean for Technology Transfer Park Sunwon have been exemplary leaders of KAIST. Our academic deans, Dean Do Young Kyu, Dean Dong Won Kim, Dean Sang Yup Lee, Dean Seung O Park, Dean Lee Yong Hoon, and Dean Ravi Kumar have shown great leadership and served KAIST most effectively. Professor Kim Soo Hyun has done a great job for the KAIST Development Foundation and for the KAIST Alumni Association. Director Lee Sang Moon has been a distinguished leader of our administration. Also I would like to thank the head of the Planning Office Jang Jae Suk and Team Leader Kim Kihan for their exceptional work, notwithstanding the difficult tasks they had to perform. Many of our faculty members who have not held any office formally have made KAIST what it is today. Their commitment, scholarship, mentorship to our students, and their service for KAIST and Korea have made strengthened KAIST as an institution. In this regard, I would like to thank Professor Kim Jung Hoi for his great leadership of the Faculty Association. Finally, I owe a great debt and special thanks to my office staff. Chief of Staff Won Dong Hyuck has been an exceptional colleague in executing the work of the office of the President of KAIST. He was ably assisted by Mr. Cho Boram, Ms. Hong Yoonju, and Mr. Kang Yong Seop. They have worked tirelessly and their achievements on behalf of KAIST have been tremendous. I would be remiss not to recognize the most important member of my life, my wife, who shares my commitment and passion for KAIST’s success. Without her undying support and wise counsel, I would not be here today. I am eternally grateful. There is a great deal of exciting and challenging work ahead. We will now begin to form a new team for the next phase of KAIST’s development. As of August 1, 2010, Professor Choi Byung Kyu will be the Provost, Professor Yang Dong Yul will be VP in charge of KI and research, Professor Joo Dae Joon will be VP for External Affairs, and Professor Lee Gyun Min will be the Dean for Academic Affairs. There will be some other changes as well. I ask each and every one of you to give them your support as they undertake new tasks for KAIST. Our work will not be easy. We must move forward with an unparalleled dedication to excellence, a palpable and contagious sense of enthusiasm, a genuine trust in and respect for one another, and an unfailing belief in what KAIST should and can be. I pledge to do my best to serve you and KAIST most effectively. With your help and through our work, we will fuel the pride into Korea and its people through the education of our young people and through innovative research that will fundamentally change our world for the better. Thank you.
2010.07.15
View 14077
The incumbent head of KAIST has been reelected for the second term in office.
President Nam Pyo Suh, whose first term in office is nearing in early July, has succeeded to secure his position for the second term. The KAIST Board of Trustees held a meeting on July 2, 2010 at Westin Chosun Hotel in Seoul and selected the incumbent president to work continually for the next four years. Upon approval from the Mister of Education, Science and Technology, his second term will begin on July 14, 2010 as the 14th President of KAIST.
2010.07.07
View 9438
A senior couple donated their fortune to KAIST, hoping their contribution to be used for the development of science and technology in Korea.
A couple living in Kyunggi Province, Chun-Sik Cho (86) and Chang-Gi Yoon (82), donated to KAIST a 10 billion won worth of real estate. The couple thought about giving away their fortune since retirement and finally made up their mind after becoming to know about their neighbor’s good deeds. The neighbor, Byung-Ho Kim, gave KAIST a 30 billion won worth of real estate last year. Influenced by Mr. Kim’s donation and their long-cherished wish to help others in need, the couple decided to transfer the ownership of their land to KAIST. They hoped that their contribution to be used for the development of science and technology in Korea. The couple, who survived through the Korean civil war in the early 1950s, recalled their old days, “We made through a harsh and difficult life right after the war. Everyone was poor and had nothing to wear or eat. We literally had to eat all sorts of grasses that were green on the ground. All of us had to work really hard to get out of despair resulted from the colonization of our nation by Japan and the subsequent civil war.” Mr. Cho added, “The development of science and technology in our nation really propelled the overall advancement of our society and helped to make today’s success that is enjoyed by the current generation of our nation. It is our greatest hope that our contribution will add a small help in our nation’s efforts to further advance the development of science and technology. I would like KAIST to do just that with our donation.” KAIST announced a plan to use their contribution for the establishment of a new graduate school specialized in green transportation and the development of related technology, called Green Transportation Graduate School. The university will name the new graduate school after the couple’s name in recognition of their goodwill. The Green Transportation Graduate School will host academic programs and conduct researches related to the future transportation that is based on a renewable energy source and provides answers to the current energy problems faced by mankind. Multidisciplinary and convergent studies will be implemented through collaborations between academia, governments, and industries. In the past four years, KAIST has witnessed a dramatic increase in the number and amount of donations received from all corners of Korean society and from around the world since President Nam Pyo Suh took the university’s top administrative office in 2006—1,004 in 2006; 2,158 in 2007; 3,091 in 2008; and 3,324 in 2009. Major contributions since 2006 30 billion Won by Moon-Sul Chung in July 2001 10 million USD by Byiung-Joon Park in September 2007 2.5 million USD by Neil Pappalardo in November 2007 57.8 billion Won by Geun-Chul Ryu in August 2008 30 billion Won by Byung-Ho Kim in August 2009
2010.07.07
View 10984
The 8th International Conference on Metabolic Engineering was held on June 13-18, 2010 in Jeju Island, South Korea.
From left to right, top row: Distinguished Professor and the conference chair Sang Yup Lee, Sang-Hyup Kim - Secretary to the President of Korea, Dr. Jay Keasling, Dr. Greg Stephanopoulos. Left to right, bottom row: Dr. William Provine, Dr. Terry Papoutsakis, Dr, Jens Nielsen, Dr. Lars Nielsen. The importance of industrial biotechnology that produces chemicals and materials from renewable biomass is increasing due to climate change and the dearth of natural resources. Industrial biotechnology refers to a technology that allows sustainable bio-based production of chemicals and materials that could enrich human"s lives using microorganisms. This is where metabolic engineering comes into play for successful application of microorganisms, in which they are engineered in our intended way for improved production capability. The 8th International Conference on Metabolic Engineering, the longest running conference of its kind, was held on June 13-18, 2010 at the International Convention Center in Jeju Island, South Korea. Distinguished Professor Sang Yup Lee of KAIST, Dean of College of Life Science and Bioengineering and Co-Director of Institute for the BioCentury, chaired the conference with the main theme of "metabolic engineering for green growth." With 300 delegates selected by the committee, papers on production of biofuels, chemicals, biopolymers, and pharmaceutics and the development of fundamental metabolic engineering techniques were presented at the conference along with examples of successful commercialization of products developed by several global companies. Sang Hyup Kim, Secretary to the President of Korea, gave an opening plenary lecture entitled "Korean green growth initiative," to inform experts from around the globe of the leadership on green growth in Korea. Young Hoon Park, President of Korea Research Institute of Bioscience and Biotechnology (KRIBB, Korea) delivered his congratulatory address. Sang Hyup Kim said, "Hosting an international conference in Korea on metabolic engineering, which forms a core technology necessary for the development of environmentally friendly processes for producing chemicals and biofuels from renewable biomass, is very meaningful as green growth is a big issue around the globe. This is a great chance to show the excellence of Korea"s green growth associated technology to experts in metabolic engineering and industrial biotechnology." A total of 47 invited lectures in this conference included recent and important topics, for instance, "Synthetic biology for synthetic fuels" by Dr. Jay Keasling from the Joint BioEnergy Institute (USA), "Microbial oil production from renewable feedstocks" by Dr. Greg Stephanopoulos from MIT (USA), "Yeast as a platform cell factory for production of fuels and chemicals" by Dr. Jens Nielsen from Chalmers University (Sweden), "Mammalian synthetic biology - from tools to therapies" by Dr. Martin Fussengger from ETH (Switzerland), "Building, modeling, and applications of metabolic and transcriptional regulatory networks at a genome-scale" by Dr. Bernhard Palsson from the University of California - San Diego (USA), "Genome analysis and engineering Eschericha coli for sucrose utilization" by Dr. Lars Nielsen from the University of Queensland (Australia), "Artificial microorganisms by synthetic biology" by Dr. Daniel Gibson from JCVI (USA), and "Metabolomics and its applications" by Dr. Masaru Tomita from Keio University (Japan). From Korea, Dr. Jin Hwan Park from the research group of Dr. Sang Yup Lee at KAIST presented "Systems metabolic engineering of Escherichia coli for amino acid production," and Dr. Ji Hyun Kim from KRIBB presented "Genome sequencing and omics systems analysis of the protein cell factory of Escherichia coli". Global companies involved in biorefinery presented their recent research outcomes with emphasis on commercialized technologies. They included "Metabolic and process engineering for commercial outcomes" by Dr. William Provine from DuPont (USA), "Direct production of 1,4-butanediol from renewable feedstocks" by Dr. Mark Burk from Genomatica (USA), "Development of an economically sustainable bioprocess for the production of bio 1,2-propanediol" by Dr. Francis Voelker from Metabolic Explorer (France), "Biotechnology to the bottom-line: low pH lactic acid production at industrial scale" by Dr. Pirkko Suominen from Cargill (USA), "Bioisoprene™: traditional monomer, traditional chemistry, sustainable source" by Dr. Gregg Whited from Danisco (USA) and "Efficient production of pharmaceuticals by engineered fungi" by Dr. Roel Bovenberg from DSM (Netherlands). This biennial conference also presented the International Metabolic Engineering Award (expanded version of the previous Merck Metabolic Engineering Award) to the best metabolic engineer in the world. The 2010 International Metabolic Engineering Award went to Dr. E. Terry Papoutsakis from the University of Delaware (USA) who has contributed to the production of biobutanol through the metabolic engineering of Clostridia in the last three decades, and he gave an award lecture. Dr. Sang Yup Lee, the current chair of the upcoming conference, was the previous recipient of this award at the last metabolic engineering conference in 2008. In addition to the invited lectures, a total of 156 carefully selected poster papers were chosen for presentation, and awards were presented to the best posters after rigorous review by the committee members. Such awards included "The 2010 Metabolic Engineering Best Poster Award" and the "2010 Young Metabolic Engineer Award" from the Metabolic Engineering conference, and prestigious international journal awards, including "Wiley Biotechnology Journal Best Poster Award", "Wiley Biotechnology and Bioengineering Best Poster Award" and "Elsevier Metabolic Engineering Best Paper Award." Dr. Catherine Goodman, a senior editor of Nature Chemical Biology, also presented the "Nature Chemical Biology Best Poster Award on Metabolic Engineering." Regarding this conference, Dr. Sang Yup Lee, the conference chair, said, "This conference is the best international conference in the field of metabolic engineering, which is held every two years, and Korea is the first Asian country to host it. All the experts and students spend time together from early breakfast to late poster sessions, which is a distinct feature of this conference. Although the number of delegates had typically been limited to 200, around 300 delegates were selected this year to accept more attendees from many people who have been interested in metabolic engineering. Also, it is very fitting that "green growth" is the main topic of this conference because Korea is playing a key role in this field. I"m grateful to the Lotte Scholarship Foundation, COFCO, GS Caltex, Bioneer, US DOE, US NSF, Daesang, CJ Cheiljedang, Genomatica and DuPont who provided us with generous financial support that allowed the successful organization of this conference." The conference was organized by the Systems Biology Research Project Team supported by the Ministry of Eduction, Science and Technology (MEST), Microbial Frontier Research Project Group, World Class University Project Group at KAIST, Institute for the BioCentury at KAIST, Korean Society for Biotechnology and Bioengineering, and the Engineering Conference International (ECI) of the United States. Inquiries: Professor Sang Yup Lee (+82-42-350-3930), industrialbio@gmail.com
2010.06.25
View 17815
The 2010 International Forum on Electric Vehicle will be held at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea.
Universities, industries, and governments from the world gathered to make an important endeavor for the commercialization of electric vehicles that has emerged as a strong option to replace conventional cars with an internal combustion engine. With the potential benefit of electric cars, in view of environmental protection and less dependence of oil import, they still have limitations for the daily use in customers’ perspective. Electric cars are still very expensive to own with relatively short distance of driving with one charging and with the expensive and bulky nature of the batteries, in addition to the safety concerns with the Lithium batteries. The Korea Advanced Institute of Science and Technology (KAIST) will hold an international forum, at which it hopes to address a wide range of issues related to the development and commercialization of electric vehicles. The 2010 International Forum on Electric Vehicle will be held for three days at KAIST’s campus in Daejeon, South Korea, from June 17th to 19th, 2010. Internationally renowned speakers from Korea and overseas will present their views and conduct a discussion forum on the technology, market, and policy on electric vehicles. The event is open to the public. Major discussions, however, will take place on the second day, Friday, June 18, 2010, which will proceed with two sessions. In the first session, conference participants will discuss the topic of “policies and markets for electric vehicles,” and at the second session, they will take up the issue of “electric vehicle technologies.” Dr. Andrew Brown, president of SAE International and the executive director and chief technologist of Delphi, is scheduled to give a key note speech. The SAE International is a global association of more than 128,000 engineers and related technical experts in the aerospace, automotive, and commercial vehicle industries. Topics to be covered by Dr. Brown during his key note speech are, among other things, elements of market forces for hybrid electric vehicles, electric vehicles, or battery-powered vehicles; clean technologies necessary for sustainable development; pending issues facing the automotive industry to create a substantial share by electric cars and government aids to increase consumers’ buying power for expensive electric cars; technology innovation required for the improvement of batteries and power electronics; development of smart grids; and other key issues that would mature an ever-growing market for electric vehicles. President Nam Pyo Suh of KAIST will also deliver a key note remark on the overall accomplishments of online electric vehicle (OLEV) developed by KAIST. While stressing the OLEV’s technological breakthrough to succeed in the wireless in-motion power transfer through electromagnetic induction, President Suh will review the necessity of developing electric cars as a corresponding measure against climate changes and address the issues of battery weight and lifespan, charging time, and the limited amount of reserved Lithium. Dr. Steven Shladover from the California Partners for Advanced Transit and Highways (California PATH), established in 1986 in collaboration with the University of California in Berkeley and the California Transit, will attend the conference. California PATH is a multi-disciplinary program with universities statewide and cooperative projects with private industry, state and local agencies, and non-profit institutions to find solutions to the problems of California’s surface transportation systems through cutting edge research. California PATH once implemented a bold, innovative research project in the early 1990s in order to overcome the most difficult technical hurdle to reduce the heavy dependence of batteries for electric cars by adopting a non-contact transfer of electric power during vehicles’ movement. Despite the research declared as “unsuccessful” by California PATH, the implications of their innovative approach to solve an important issue inspired many researches subsequently followed—one of them is KAIST’s OLEV project. In addition, the Infineon Technologies AG, a leading semiconductor and system manufacturer based in Germany, which offers solutions for automotive, industrial and multimarket sectors for applications in communication and memory products, will come to the forum and present a paper on its expertise to develop the necessary components for electric vehicles. On the last day of the forum, all participants will have a chance to ride the Online Electric Vehicle (OLEV) at KAIST’s campus. For details of the event, please visit the website of “www.olev.co.kr/en/ifev or refer to the invitation attached herewith. About KAIST’s Online Electric Vehicle: The Online Electric Vehicle (OLEV) developed by KAIST is a dynamic plug-in electric car that receives electricity while running or stopping and thus acquired a complete mobility unlike other type of electric cars, whether hybrid or not. The OLEV reduces the size of a battery to one-fifth of the current battery installed in an electric car. Pure electric cars depend on a large bulky battery that has been a major obstacle to make the cars commercially accessible to the mass market. The OLEV gets charged wirelessly, a distinct difference to other dynamic plug-in electric cars including a tram or trolley, which directly picks up electricity from the road. To explain it further, the OLEV is electrified through power lines buried underground; when flowing low frequency of currents, an electric magnetic field is created around the underground power lines, and the pick-up gadget installed underbody of an electric vehicle converts the field into electricity; and the vehicle then uses electricity either for operation or stores it at a battery to be used for running the road that is not equipped with the power lines. The electric power generated from the underground travels to the surface of the road above 20cm-25cm. KAIST has succeeded to develop a commercial model of OLEV with a safe Electromagnetic Field (EMF), well below the international safeguard of 65mG. The actual model has been up and running at an amusement park in Seoul for the transportation of passengers. The non-contact charging method applied to the OLEV will accelerate the commercialization of electric cars by making a battery affordable and safer for a consumer.
2010.06.25
View 12938
President of Israel visited KAIST on June 9, 2010.
President of Israel, Shimon Peres, visited KAIST today on June 9, 2010 to witness the development of science and technology in Korea and explore ways of establishing collaboration and cooperation with industries and universities between Korea and Israel. President Peres led a delegation consisted of the Israeli Mister of Industry, Trade, and Labor, the Minister of Communication, and 60 business leaders from the top companies in the security, infrastructure, communication, high-tech, and water industries. Upon their arrival to the campus, the Israeli delegation was greeted by KAIST’s humanoid robot, “HUBO,” and then moved to its branch campus, IT Convergence Campus, for a ride of Online Electric Vehicle (OLEV) that has been developed by KAIST. The OLEV receives the necessary power through the cable lines buried underground, so it can be provided with a constant and continuous supply of electricity while running or stopping. Between roads and OLEVs is nothing but space. There is no electrical wires intricately crossed underbody of the electric car or above the road. The pick-up equipment installed beneath the body of the electric car collects magnetic fields created around the underground cables, which then converts the filed into electricity. The OLEV’s wireless, non-contact charging system made it possible for a battery currently used for hybrid or pure electric cars on the market to be smaller and cheaper. President Peres expressed a great interest in the technology applied to the OLVE, quoting, “the OLEV system is indeed very impressive.” He talked about efforts being made in Israel with respect to the development of electric cars. The country plans to replace the conventional transportation system with electric cars by constructing a network of battery exchange stations and roadside charge points which allow the cars to be charged whenever they are parked. “Despite the different approach taken by the two nations for the development of electric cars, I believe that transforming the automobile industry from combustion engine to electric system is the right direction we should all follow. Without addressing the current transportation system that heavily dependent on natural resources, we will not be able to promote “green growth on a global scale,” added President Peres. In addition to electric cars, President Peres took up a considerable portion of his time to exchange ideas on how to expand cooperative relations between universities in Korea and Israel, specifically in the area of space, biotechnology, nanotechnology, high-tech, renewable and alternative energy, and the EEWS initiatives that have been implemented by KAIST to find answers to global issues such as climate change and depletion of natural resources. The EEWS stands for energy, environment, water, and sustainability. In response, the president of KAIST pledged to set up a stronger and greater tie with research universities in Israel, particularly called for more collaboration between KAIST and Technion-Israel Institute of Technology. Also, the Israeli delegation had a tour for several Korean research and development centers in Daedeok Innopolis, located in the City of Daejeon, which is the 2nd largest science and research complex in Korea. Shimon Peres, the 9th president of Israel, held many of important government positions in Israel, among other things, Prime Minster and Minister of Defense. He won Nobel Peace Prize in 1994, together with Yitzhak Rabin and Yasser Arafat for the conclusion of a peace agreement, Oslo Accords, between Israel and Palestine Liberation Organization.
2010.06.09
View 15066
KAIST held an opening ceremony for the completion of KAIST Institute Building.
A Korean American businessman and his wife, Byiung Jun Park and Chunghi Hong, donated 10 million USD for the construction of the building. KAIST hosted an opening ceremony on May 11, 2010 for the new addition to its campus, called the Chunghi & Byiung Jun (BJ) Park KAIST Institute Building. The KI Building will serve as a hub for creative multidisciplinary researches. A Korean American businessman and his wife made a considerable contribution for the construction of the building, worth 10 million USD. KAIST called the building Byiung Jun (BJ) Park and Chunghi Hong in recognition of their contribution. Chairman Park was the founder of the Merchandise Testing Laboratory, a leading textile quality control multinational. It took 19 months to finish the construction of the KI Building with a total cost of 36 billion Korean won. The building consists of one basement and five ground floors. At the basement, there are clean room and equipment storage room; on the 2nd and 3rd floors, conference and exhibition halls; and on the rest of the floors, research labs and administration offices are to be located. KAIST’s eight integral research institutes will be placed inside the building: the BioCentury; Information Technology Convergence; Design of Complex Systems; Entertainment Engineering; the NanoCentury; Eco-Energy; Urban Space and Systems; and Optical Science and Technology. Approximately 230 professors from 25 departments of various academic fields will make the KI Building home for study and research. The KI Building will play a great role in producing world-class convergence research works by KAIST researchers and professors, thereby making a contribution to the improvement of national competitiveness. Vice President of KI Building, Sang-Soo Kim, said, “There has been no such place for us to concentrate research manpower and equipment scattered around the campus. By having all the necessary resources at one place will allow us to conduct convergence researches more efficiently and effectively. I’d like to express my appreciation for the Ministry of Education and Science and Technology as well as Chairman Byiung Jun (BJ) Park, who gave us tremendous supports in the process of constructing the KI Building.” “The building’s inside has a unique office structure, getting rid of walls or partitions between institutes or departments, to stimulate an environment conducive to convergence researches. We hope to present a new model for creative multidisciplinary researches through a selective and focused approach to be facilitated by institutes at the KI Building,” added by the vice president.
2010.05.20
View 11765
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 91