본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
TE
by recently order
by view order
Professor Tae-Eog Lee Receives December's Scientist of the Month Award by the Korean Government
Professor Tae-Eog Lee of the Industrial and Systems Engineering at KAIST received the Scientist of the Month Award for December 2015. The award is sponsored by the Ministry of Science, ICT and Future Planning of Korea, which was hosted by the National Research Foundation of Korea. The award recognizes Professor Lee’s efforts to advance the field of semiconductor device fabrication processing. This includes the development of the most efficient scheduling and controlling of cluster tools. He also created mathematical solutions to optimize the complicated cycle time of cluster tools in semiconductor manufacturing and the process of robot task workload. Professor Lee contributed to the formation of various discrete event systems and automation systems based on his mathematical theories and solutions and advanced a scheduling technology for the automation of semiconductor production. He has published 18 research papers in the past three years and has pioneered to develop Korean tool schedulers through the private sector-university cooperation.
2015.12.10
View 6331
KAIST and the University of Minnesota-Twin Cities Partner for Research and Education Collaboration
President Steve Kang of KAIST and President Eric W. Kaler of the University of Minnesota-Twin Cities (United States) signed a memorandum of understanding to create exchange programs for students and faculty and to conduct joint research in the field of health and food. The following is an excerpt from President Kaler’s blog (https://storify.com/UMNstory/globalumn-hksk#edaadf) on his visit of KAIST on November 18, 2015: A visit to the Korea Advanced Institute of Science and Technology About 90 miles from Seoul—and more than that two-and-a-half-hours of a bus ride through the rugged early-morning traffic of South Korea’s capital city—sits Daejeon, Korea’s sixth largest city and home to KAIST, the Korea Advanced Institute of Science and Technology. Today, President Kaler and the small University of Minnesota delegation accompanying him visited what’s considered Korea’s MIT, a place focused on research and known to push the limits toward the future. Fingernail heart monitors? Wireless anesthetic-monitoring devices? KAIST is working on them. The overlap of interests—from biomedical engineering to nanotechnology to robotics—between KAIST (pronounced “Kyst”) and the U are remarkable. Smartphone apps to monitor human health and GPS-driven robots to serve military interests or deliver packages were among the developing inventions that KAIST scientists showed to Kaler. And even the personal relationships seem to illustrate the cliché of a small world and the natural affinity of Minnesota and KAIST. KAIST’s President Sang Mo Kang was once the head of the University of Illinois’ department of electrical and computer engineering, and he and Kaler—a renowned chemical engineer before becoming the U’s president—hit it off … despite disagreeing about the potential outcome of Saturday’s Illinois-Gophers football game. Accompanying Kaler on the day’s journey, meetings, and signing of a Memorandum of Understanding between the two schools to advance collaborations was U Associate Professor Sang Hyun Oh. Oh happens to be a physics graduate of this very KAIST and is now a rising star in Minnesota’s Department of Electrical and Computer Engineering. The two sides agreed to focus on matching scholars on their respective campuses to discuss the sorts of research the two institutions can partner on. The idea of “Grand Challenges,” at the core of the U’s Twin Cities campus Strategic Plan, has fascinated Korean higher education leaders during Kaler’s weeklong visit, and KAIST’s leadership was interested in the health and food research, two U strengths. ###
2015.12.04
View 7423
KAIST and Charles University Agree to Cooperate
KAIST and Charles University in Prague, the Czech Republic, agreed to cooperate in research and education. President Steve Kang of KAIST (pictured on the left) and Rector Tomáš Zima of Charles University signed the agreement on December 2, 2015, at the Hilton Hotel in Prague. Minster Yang-Hee Choi of Science, ICT and Future Planning of the Republic of Korea and Minister Kateřina Valachová of Education, Youth and Sports of the Czech Republic also joined the signing ceremony. Under the agreement, the two institutions will exchange students and researchers, as well as implement joint research programs. President Kang said, “We are pleased to work with one of the most prestigious universities in the Czech Republic and hope to build a good partnership in the years ahead.” Founded in 1348, Charles University in Prague is the oldest and largest university in the Czech Republic. The university received two Nobel prizes in physiology or medicine and in chemistry in 1947 and 1959, respectively.
2015.12.03
View 6753
KAIST Holds Its Fourth Public Art Exhibition
KAIST hosted an opening ceremony for the annual art exhibition on December 3, 2015 at the KAIST Institute building. The KAIST Art and Design Committee first organized the event in 2012 to promote the integration of art and technology. This year’s event entitled “Understanding the Purpose of an Object” will display 20 art pieces under six themes. Artist Keumhong Lee, Haeyool Roh, Joon Kim, Kyung Lee, and Juhae Yang participated in the exhibition. The names of some of the art pieces include “Feedback Field” by Joon Kim, “Self Action” by Haeyool Roh, and “Net of Time” by Juhae Yang. Juhae Yang believes that, in the digital age, an identity of an object is defined by the traces of light which we read in the information hidden in the barcodes. Based on this interpretation, she transforms the black bars and white spaces into a harmony of colors and sounds. The continuum of colors and sounds in her work arouses time-space synesthesia. Professor Sangmin Bae of the Industrial Design Department, the Director of the KAIST Art and Design Committee, hopes that the exhibition will inspire novel scientific ideas and artistic spirits. The exhibition will remain open to the public until December 20, 2015.
2015.12.03
View 7317
KAIST's Top 10 Contributions to Korea and the World
Established in 1971, the Korea Advanced Institute of Science and Technology (KAIST) started off as a relatively modest graduate school in a few disciplines in science and technology, but has gradually expanded into a full-fledged research university over the years. From the beginning, KAIST was intended to offer an elite science education, setting it apart from other universities in Korea. A majority of its graduates have contributed to the development of, what the world now praises, Korean industry and economy, and have led the Korean scientific community for several decades. The university has also advanced the frontiers of knowledge, conducting the lion’s share of the nation’s private research and development in basic and applied science, leading to innovations and technologies essential to the growth of today’s Korea. As it establishes international benchmarks of success, KAIST has acquired a global reputation for delivering the highest level of science and engineering education, while performing cutting-edge research and serving as a crucial driver to generate new knowledge and innovation beneficial not only to Korea but also to the world. The university has consistently ranked in the top 100 research universities for over more than a decade, according to the world university rankings published by international ranking institutions for higher education, among others, Quacquarelli Symonds and the Times Higher Education. KAIST will mark its 45th anniversary next year. It plans to celebrate the anniversary, and here are some of the reasons why: KAIST’s Win at the DARPA Robotics Challenge (DRC) 2015 Team KAIST, consisted of 29 members (students and researchers) led by Professors Jun-Ho Oh of the Mechanical Engineering Department and In-So Kweon of the Electrical Engineering Department, won the international humanoid robotics competition hosted by the United States (US) Defense Advanced Research Projects Agency (DARPA). Upon completion of the first and second competitions, the finals were held on June 5-6, 2015, at the Fairplex in Pomona, California. DARPA hosted the event to spur the development of humanoid robots to assist rescue and relief efforts in dangerous environments such as the Fukushima Daiichi nuclear incident in 2011. With 24 international teams participating in the finals from the US, Japan, Germany, China, Italy, and Korea, Team KAIST’s humanoid robot, DRC-HUBO, completed all eight tasks in 44 minutes and 28 seconds, six minutes earlier than the runner-up, and almost eleven minutes earlier than the third-place team, walking away with the grand prize of USD 2 million. Hitting a Grand Slam to Win Major International Design Awards Professor Sang-Min Bae of the Industrial Design Department achieved a grand slam in international design awards with his work HEARTea, an interactive tumbler, winning four major design competitions in the world: the iF Design Award, the International Design Excellence Awards, the Red Dot Design Award, and the Good Design Award. Released in 2010, HEARTea swept prizes from the four awards which were held during the period of the year 2010-2011. The tumbler displays the temperature of liquid contained inside in three degrees (cool, warm, and hot) by showing different colored lights on the surface of the tumbler based on the liquid temperature (see picture below). In 2015, Professor Bae and his research team won three awards from the 2015 Red Dot Design Award: the Best of the Best Award and two Red Dot Design Concept Awards. The team received the Best of the Best Award, the most prestigious award among the Red Dot Design awards, for Boxchool, a modular classroom built on shipping containers, which offers underprivileged children better opportunities for learning. With greater mobility, Boxchool can be easily installed in any setting, including remote areas where children do not have access to regular school facilities. Glass Fabric Thermoelectric Generator, the Grand Prize Winner at the Netexplo Forum 2015 Professor Byung-Jin Cho of the Electrical Engineering Department received the grand prize at the Netexplo Forum 2015 held in partnership with the United Nations Educational, Scientific, and Cultural Organization (UNESCO) on February 4-5, 2015, at the UNESCO House in Paris. Established in 2007, the Netexplo Forum is an annual international conference hosted by the Netexplo Observatory, a non-profit organization sponsored by the French Senate and the French Ministry for the Digital Economy, which studies the impact of digital technology on society and business. Each year, the Netexplo Forum highlights major trends in digital technology and innovation worldwide and lists the top ten most promising technologies that it considers will greatly impact the world. Among the list for this year, Professor Cho’s glass fabric-based thermoelectric (TE) generator received the grand prize. Using a screen-printing technique, Professor Cho printed TE liquid materials onto a glass fabric to generate electricity through the thermoelectric effect, that is, by generating electricity from temperature difference. Since the glass fabric is light and flexible, this technology is expected to have a wide range of applications in wearable computers and devices. Charging on the Go: Online Electric Vehicle System KAIST’s Online Electric Vehicle (OLEV) is a system that charges electric vehicles while stationary or driving, thus removing the need to stop for charges. Developed by Professor Dong-Ho Cho of the Electrical Engineering Department and his research team, OLEV receives power wirelessly through a new application called “Shaped Magnetic Field in Resonance technology (SMFIR).” Electrical cables buried underneath roads create magnetic fields, and a receiving device installed underneath the electric vehicle collects the fields and converts them into electricity. Time, a US weekly magazine, listed OLEV as one of the 50 Greatest Inventions of the Year 2010 in its November 22nd issue. Since 2012, several OLEV buses have been operating daily to provide citizens with transportation in cities such as Yeosu, Gumi, and Sejong in Korea. In April 2015, Professor Cho signed a memorandum of understanding with the city government of Medellín, the second largest city in Colombia, to provide two OLEV buses for inner-city transportation services. The research team also developed OLEV for a high capacity transit system including trams and high-speed trains, successfully showcasing 60 kHz of power transferred wirelessly to trams and trains in 2013 and 2014, respectively. Pioneer in the Development of Functional Mesoporous Materials and Zeolites On September 25, 2014, Thomson Reuters announced the “2014 Citation Laureates,” a list of candidates considered likely to win the Nobel Prize in the fields of physics, chemistry, physiology or medicine, and economics. Distinguished Professor Ryong Ryoo of the Department of Chemistry was named the 2014 Thomson Reuters Citation Laureates in Chemistry in recognition of his significant contribution to the advancement of designing functional mesoporous materials. He is the first Korean scientist to make the list. Professor Ryoo has pioneered the field of functional mesoporous materials and zeolites which are widely used as catalysts and sorbents. In 1999, he developed a nanocasting method, and with the technique, was able to synthesize ordered mesoporous carbon materials, for the first time in the world. Today, ordered mesoporous carbon materials have widespread applications in many areas such as adsorbents, catalysts and supports, gas-storage hosts, and electrode materials. Since 2006, using zeolite frameworks, Professor Ryoo has led the development of new methods to synthesize mesoporous materials whose molecules are designed to have a hierarchical structure of microspores and mesopores. He has published 255 research papers in renowned academic journals including Nature and Science. In December 2011, Science highlighted his research as one of the top ten breakthroughs in the year of 2011 in an article entitled “Directing Zeolite Structures into Hierarchically Nanoporous Architectures.” Professor Ryoo received numerous awards and honors including the World’s Top 100 Chemists over the Past 11 Years (2000-2010) by UNESCO and IUPAC (International Union of Pure and Applied Chemistry), the Breck Award by International Zeolite Association, and the Ho-Am prize in Science. The Launch of Korea’s First Satellites into Space Founded in 1989, the Satellite Technology Research Center (SaTReC) at KAIST has led the development of a series of Korean-made satellites over the past 26 years. The first satellite, the Korea Institute of Technology Satellite-1 (KITSAT-1), was launched on August 11, 1992, at the Guiana Space Center in Kourou, French Guiana. KITSAT-1 was designed in collaboration with a British university, the University of Surrey in Guildford. The success of KITSAT-1 sparked nation-wide interest in the development of space technology and led to the subsequent launches of 18 satellites and three carrier rockets such as KITSAT-2 and 3 (meteorological satellites); KSR-1, 2, and 3 (carrier rockets); KOREASAT-1, 2, 3, 5, and 6 (communication satellites); KOMPSAT-1, 2, 3, and 5 (multipurpose satellites); STSAT-1, 2C, and 3 (scientific satellites); and COMS-1 (navigation satellite). The latest scientific satellite, STSAT-3, and an earth observation satellite, KOMPSAT-3A, were launched in 2013 and 2015, respectively. The STSAT-2C, exclusively developed by SaTReC, was launched in January 2013 and transmitted data on the observation of space environments to the ground station located on KAIST’s campus for 14 months. The STSAT-2C was the first satellite developed solely with Korean technology. On June 30, 2009, the Korean government also established a spaceport in South Jeolla’s Goheung County, the Naro Space Center to launch satellites and spacecraft. KAIST: Major Feeder for Startups in Korea As seen in its core values of promoting creativity and a challenging spirit, KAIST has always encouraged startups and technology transfers led by university members including students and faculty. In the past four years from 2011 to 2014, students and faculty members have created 104 startups based on technology innovation and research outcomes, with an average of 26 new companies started per year. This is the highest number of university-led startups in Korea. As of 2013, KAIST graduates founded a total of 1,245 companies, generating approximately USD 1.5 billion sales and creating 34,000 jobs. KAIST has provided a variety of programs and facilities to build a startup-friendly campus culture and support student- and faculty-led entrepreneurship, for example, the End-Run Policy, Startup KAIST Studio, the Institute of Startup and Entrepreneurship, and the Startup Incubation Center. In particular, KAIST Idea Factory, a startup laboratory established last year, where students play around with ideas by conducting new experiments or building test products, created 3-D printers this year, producing 20 prototypes and filing four pending patents. Recently, KAIST has registered four proprietary standard patents with MPEG (Moving Picture Experts Group)-LA’s HEVC (High Efficiency Video Coding) Patent Portfolio License, which provides access to essential patent rights for the HEVC digital video coding standard. KAIST expects to acquire more than 50 proprietary standard patents within two years, generating close to UDS 1 million in income. The Number of KAIST Doctoral Graduates Reaches Over 10,000 Since the establishment of KAIST forty-four years ago, more than ten thousand alumni have received their doctorates. The university’s 2015 Commencement ceremony took place on February 13, 2015, at the Sports Complex on campus, awarding Dr. Sun-Mi Cho of the Department of Biological Sciences the 10,000th doctoral degree. She also received her Bachelor’s and Master’s degrees from KAIST. In 1978, KAIST had only two doctoral graduates, but since 1987, there have been more than one hundred graduates each year, two hundred since 1994, and four hundred since 2000. In 2015 alone, 522 doctoral students graduated. One of the first doctoral graduates, Dr. Dong-Yol Yang (Class of 1978 in the Mechanical Engineering Department) became a professor in the same department of KAIST. In the early 1970s, many Koreans preferred to go abroad for Ph.D. degrees, but this changed when KAIST began to select candidates for master’s degrees in 1973, and doctoral degrees in 1975. Talented Korean students began to work in KAIST laboratories, and its graduates were known for their knowledge and skills. Now, KAIST receives many applications from talented foreign students as well. At the 2015 Commencement, KAIST conferred 522 Doctoral, 1,241 Master’s, and 915 Bachelor of Science degrees. Since its inception in 1971, KAIST has granted 10,403 doctoral degrees, 26,402 master’s degrees, and 51,412 bachelor’s degrees. Fostering a New Learning Model: The Education 3.0 Program KAIST undertook a bold initiative to improve its education system that would address more effectively the needs of today’s higher education to foster talents with creative and critical thinking skills. It introduced a new pedagogical model, the Education 3.0 program, to the campus in the spring of 2012, which was then an extremely rare movement taken by universities around the world. The Education 3.0 program incorporates flipped learning and smart classrooms. This means there are no formal lectures while in-class time is devoted to problem solving, exercises, projects, or discussions. The program provided students with greater opportunity to control their learning and interact more with professors and peers. Originally started with three general courses in physics, chemistry, and biology, the Education 3.0 is now offered in 50-60 courses per semester. In 2013 alone, approximately 2,000 KAIST students took the Education 3.0 courses. The university has also developed and implemented an e-Learning system to provide online courses, as well as participated in the Massive Open Online Course (MOOC). Partnering with Coursera since 2013, KAIST has offered three MOOCs in engineering and business management to the global community. Leading the efforts to create Korean MOOCs (K-MOOCs), KAIST agreed with other Korean universities in October 2015 to create online courses in basic subjects of physics, chemistry, mathematics, life science, mechanical engineering, and material science. K-MOOCs will be available in the summer of 2016. Holistic Admissions for Undergraduates Korean universities traditionally put an emphasis on students’ empirical data such as a GPA or the national College Scholastic Ability Test (CSAT) when reviewing applicants for the undergraduate admission. This practice, however, has posed serious challenges, most notably with CSAT’s requirement that the test takes place only once a year. It was simply impossible and unfair to assess students’ capability from the scores of a high-pressure, high-stakes standardized test. In 2009, KAIST changed its undergraduate admission process to consider the whole applicant’s profile, not just looking for students with good grades, but interesting and promising students who would contribute to the campus community in different and diverse ways. KAIST’s admissions officers have taken into account applicants’ interests, passions, special talents, and personality through their personal essays, recommendation letters, extracurricular activities, and intensive interviews. Prior to KAIST’s new policy, no other university in the nation had ever incorporated such a holistic approach to review student applications. Today, most Korean universities have adopted this admission policy. In addition, for the first time in Korea, KAIST offered all freshmen the option to defer the decision on majors, thereby allowing them to explore their interests more freely. Even after declaring majors as sophomores and higher classes, KAIST students can easily change their majors, and undergraduate students can actually create and lead their own research projects. As such, KAIST has continued to offer innovations to provide students with a quality education to foster their potential.
2015.11.27
View 16116
More Donations Arrive to Establish the New Medicine Research and Development Center on Campus
A raft of businesses continues to make donations to establish a new medicine research and development center on campus. The Department of Biological Sciences at KAIST is leading the fundraising campaign. On November 9, 2015, Nikon Instruments Korea Co., Ltd. contributed USD 8,500 to the fundraising, followed by Carl Zeiss AG and Three-Shine Inc., which donated USD 12,800 and 8,500, respectively. Bruno Lin, an Executive Director at Carl Zeiss AG in Korea, said, “I’m very glad to participate in this fundraising initiative for the Biological Sciences Department at KAIST, one rapidly reaching out to the world.” From the left in the picture are Vice President Tae-Hoon Kim, Director Gyu-Hyeok Lee, and Executive Director Bruno Lin of Carl Zeiss AG, Byung-Ha Oh, Dean of the Biological Sciences Department, and Professor Eunjoon Kim. From the left in the picture are Byung-Ha Oh, Dean of the Biological Sciences Department, President Chun-Gui Park of Three-Shine Inc., and Professor Daesoo Kim. President Chun of Three-Shine Inc., said, “We hope that the Department of Biological Sciences at KAIST, aided by the construction of new research center, will produce practical research achievements and stand on the frontier of new medicine development research in Korea.” The New Medicine Research and Development Center will be equipped with state-of-the-art, purpose-built research facilities to support convergent, interdisciplinary research in biomedicine.
2015.11.27
View 6738
Dr. Ryu of KAIST Receives the S-Oil Outstanding Paper Award
Dr. Je-Kyung Ryu of KAIST’s Department of Physics has been awarded the S-Oil Outstanding Paper Award for his doctoral dissertation’s originality and applicability. Professor Tae-Young Yoon of Physics is his doctoral advisor. The award ceremony took place on November 25, 2015 at the Press Center in Seoul. This S-Oil Outstanding Paper Award, jointly sponsored by the Korean Academy of Science and Technology (KAST) and the Scholastic University Presidential Association, was established to foster young talented scientists in basic science and to advance the field. The award is given every other year for each of the fields of physics, chemistry, mathematics, biology, and earth sciences. With the award, Dr. Ryu received a research grant of USD 8,600. He discovered, for the first time in the world, how NSF (N-ethylmaleimide-sensitive factor), a protein involved in a vesicular transport in cellular activities, disassembles a SNARE (soluble NSF attachment protein receptor) complex, using a unimolecular biophysics method. Unlike the existing studies, he proposed a model in which NSF disassembles SNARE complexes at one step, and as a result, provided evidence of how the SNARE complex influenced the fusion of biological membranes. His research was published in the scientific journal Science issued on March 27, 2015. The title of the paper is “Spring-loaded Unraveling of a Single SNARE Complex by NSF in One Round of ATP Turnover.”
2015.11.27
View 7684
KAIST and Four Science and Technology Universities Host a Start-up Competition
KAIST and four other science and technology universities, such as Gwangju Institute of Science and Technology (GIST), Ulsan National Institute of Science and Technology (UNIST), Daegu Gyeongbuk Institute of Science and Technology (DGIST), and Pohang University of Science and Technology (POSTECH), hosted a startup competition on November 27, 2015 at the Dongdaemun Design Plaza in Seoul. Approximately 150 participants including students from the five universities, "angel" investors, and entrepreneurs attended the competition. The competition was held to promote startups that are based on research achievements in science and technology and to foster entrepreneurs with great potential. Two hundred and sixty applicants from 81 teams competed this year. Only ten teams made it to the finals. KAIST students presented two business plans: an experience-centered education platform and mobile taxi-pooling service. Students from other universities presented a brain-stimulating simulation software (GIST), handy smart health trainer (GIST), real-time reporting system for luggage (DGIST), a flower delivery system (UNIST), surveillance and alarm system for stock-related events via machinery studies (UNIST), augmented emotion toys using augmented reality (POSTECH), and a nasal spray for fine dust prevention (POSTECH). KAIST also displayed an exhibition of “wearable haptic device for multimedia contents” and “next generation recommendation service platform based on one-on-one matching system with high expandability and improved user experience system.” The winning team received an award from the Minister of Science, ICT and Future Planning of Korea, as well as an opportunity to participate in overseas startup programs over the course of ten days. Joongmyeon Bae, Director of the KAIST Industry and University Cooperation, who organized the contest, said, “The alumni of Stanford University (USA) has annually created over 5.4 million jobs through startup activities. Likewise, we hope that our event will contribute to job creation by fostering innovative entrepreneurs.”
2015.11.26
View 9414
Professor Keon-Jae Lee Lectures at IEDM and ISSCC Forums
Professor Keon-Jae Lee of KAIST’s Materials Science and Engineering Department delivered a speech at the 2015 Institute of Electrical and Electronics Engineers (IEEE) International Electron Devices Meeting (IEDM) held on December 7-9, 2015 in Washington, D.C. He will also present a speech at the 2016 International Solid-State Circuits Conference scheduled on January 31-February 4, 2016 in San Francisco, California. Both professional gatherings are considered the world’s most renowned forums in electronic devices and semiconductor technology. It is rare for a Korean researcher to be invited to speak at these global conferences. Professor Lee was recognized for his research on flexible NAND chips. The Korea Times, an English language daily newspaper in Korea, reported on his participation in the forums and his recent work. An excerpt of the article follows below: “KAIST Professor to Lecture at Renowned Tech Forums” By Lee Min-hyung, The Korea Times, November 26, 2015 Recently he has focused on delivering technologies for producing flexible materials that can be applied to everyday life. The flexible NAND flash memory chips are expected to be widely used for developing flexible handsets. His latest research also includes flexible light-emitting diodes (LED) for implantable biomedical applications. Lee is currently running a special laboratory focused on developing new flexible nano-materials. The research group is working to develop what it calls “self-powered flexible electronic systems” using nanomaterials and electronic technology. Lee’s achievement with flexible NAND chips was published in the October edition of Nano Letters, the renowned U.S.-based scientific journal. He said that flexible memory chips will be used to develop wearable computers that can be installed anywhere.
2015.11.26
View 9332
Academic Award Established in the Honor of Professor Jae-gyu Lee
An academic award has been established to celebrate the academic achievements of Jae-gyu Lee, a chair professor at KAIST’s Business and Management Department. The Korean Society of Management Information Systems (KMIS) created the “Safe Internet Jae-gyu Lee Academic Award” at the 2015 KMIS Fall Symposium held on November 21, 2015 at the Business and Management building of Yonsei University in Seoul. The award will be presented to researchers operating both in and outside Korea, who strive to achieve a clean and safe Internet environment by preventing cyber terrors, attacks, and crimes. Appointed as the President of the Association for Information Systems (AIS), a global academic organization to advance the field of information systems, in July 2015, Professor Lee has adopted the “safe and clean Internet culture” as the official vision of the AIS. During his inaugural speech, he urged the international community including AIS to work together for better solutions to cyber problems. For the implementation of the Safe Internet Jae-gyu Lee Academic Award, KMIS plans to form a committee to select winners through evaluations and recommendations. The award will be presented from 2016 forward. Also, Professor Lee has recently donated USD 87,000 to KMIS to fund research in safe Internet culture and cyberspace security.
2015.11.25
View 6895
Open KAIST 2015
KAIST’s research environment and its most recent achievements were open to the public. KAIST hosted “Open KAIST 2015” over two days from November 5-6, 2015 in which its 17 departments and three research centers were open to the public. The event is one of the largest events that KAIST holds, which permits such public viewings of its facilities. It is the eighth time it has taken place. During this event, the departments and centers offered 64 programs including laboratory tours, research achievement exhibitions, department introductions, and special lectures. The “Motion Capture System”of Professor Jun-Yong Noh’s lab (Graduate School of Culture Technology) drew particular attention. The “Motion Capture System” expresses human and animal motion in three-dimensional (3D) space using infrared cameras and optic markers, which can then be applied to various industries such as movies, games, and animation. During the program, researchers themselves demonstrated the recording of the movement and its conversion into 3D characters. Professor Yong-Hoon Cho’s laboratory introduced the scientific mechanism behind the Light Emitting Diode (LED) as well as its manufacturing process under the topic:“A to Z of LED Production.” The reserachers explained that how green LED is much more efficient compared to previous light sources and presented applications that how it is widely used in everyday life in smart phones, electronic displays, and other mobile gadgets. Professor Jun-tani of the Department of Electronic and Electrical Engineering introduced “Humanoid Robot Nao’s Imitation of Human Motions.” Nao is an autonomous, programmable humanoid robot developed by a French robotics company based in Paris. Nao has an artificial neural circuit, which is the functional equivalent of a human brain, and can thus mimic the subject’s motions through learning. In addition, Professor Hyo-Choong Bang (Department of Aerospace Engineering) in his lecture on “Unmanned Vehicle Research and Nano Satellites” and Professor Hyun Myung (Department of Civil and Environmental Engineering) on his lecture on “Future Civilization Robot System: the Jellyfish Elimination Robotic Swarm and the Wall-Climbing Drone” provided information on the progress of their respective research. KAIST also displayed its most recent research achievements. A lecture on “Information Technology Convergence” offered a showroom for “Dr. M,” which is a mobile healthcare platform. Dr. M is a mobile healthcare system that collects and analyzes biosignals via a smart sensor attached to the human body that shows around 20 advanced technologies. The Satellite Technology Research Center introduced the public to its “Get to Know Satellites” program on Korea’s first satellite “Our Star 1” in addition to showing the satellite assembly room and the satellite communication center. Special lectures were also held for visitors. Professor Min-Hyuk Kim and Hye-Yeon Oh of the School of Computing talked about “Computer Graphics and Advanced Video Technology” and “Man and the Computer,” respectively, from the perspective of non-experts. Another interesting feature was the “Wearable Computer Competition” in which college students held fashion shows with computers attached to their clothes. Professor Jung Kwon Lee, the Dean of the College of Engineering, who led this event, said that “the Open KAIST, which is being held for the eighth time this year, is an excellent opportunity for the general public to experience KAIST’s research environment.” He hoped this could motivate young adults to widen their spectrum of scientific knowledge and raise affection for science.
2015.11.13
View 9268
Using Light to Treat Alzheimer's Disease
Medical application of photoactive chemicals offers a promising therapeutic strategy for neurodegenerative diseases. A research team jointly led by Professor Chan Beum Park of the Materials Science and Engineering Department at KAIST and Dr. Kwon Yu from the Bionano Center at the Korea Research Institute of Bioscience and Biotechnology (KRIBB) conducted research to suppress an abnormal assembly of beta-amyloids, a protein commonly found in the brain, by using photo-excited porphyrins. Beta-amyloid plaques are known to cause Alzheimer's disease. This research finding suggests new ways to treat neurodegenerative illnesses including Alzheimer's disease. It was published online as the lead article in the September 21th issue of Angewandte Chemie. The title of the article is “Photo-excited Porphyrins as a Strong Suppressor of ß-Amyloid Aggregation and Synaptic Toxicity.” Light-induced treatments using organic photosensitizers have advantages to managing the treatment in time and area. In the case of cancer treatments, doctors use photodynamic therapies where a patient is injected with an organic photosensitizer, and a light is shed on the patient’s lesion. However, such therapies had never been employed to treat neurodegenerative diseases. Alzheimer's starts when a protein called beta-amyloid is created and deposited in a patient’s brain. The abnormally folded protein created this way harms the brain cells by inducing the degradation of brain functions, for example, dementia. If beta-amyloid creation can be suppressed at an early stage, the formation of amyloid deposits will stop. This could prevent Alzheimer’s disease or halt its progress. The research team effectively prevented the buildup of beta-amyloids by using blue LED lights and a porphyrin inducer, which is a biocompatible organic compound. By absorbing light energy, a photosensitizer such as porphyrin reaches the excitation state. Active oxygen is created as the porphyrin returns to its ground state. The active oxygen oxidizes a beta-amyloid monomer, and by combining with it, disturbs its assembly. The technique was tested on drosophilae or fruit flies, which were produced to model Alzheimer on invertebrates. The research showed that symptoms of Alzheimer's disease in the fruit flies such as damage on synapse and muscle, neuronal apoptosis, degradation in motility, and decreased longevity were alleviated. Treatments with light provide additional benefits: less medication is needed than other drug treatments, and there are fewer side effects. When developed, photodynamic therapy will be used widely for this reason. Professor Park said, “This work has significance as it was the first case to use light and photosensitizers to stop deposits of beta-amyloids. We plan to carry the research further by testing compatibility with other organic and inorganic photosensitizers and by changing the subject of photodynamic therapy to vertebrate such as mice.” Picture 1 – Deposits of Beta-Amyloid in Fruit Flies Stopped by Using Porphyrin and Blue LED Lights Picture 2 – The Research Finding Published as the Lead Article in Angewandte Chemie (September 2015)
2015.11.11
View 10510
<<
첫번째페이지
<
이전 페이지
41
42
43
44
45
46
47
48
49
50
>
다음 페이지
>>
마지막 페이지 109