본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
PHA
by recently order
by view order
KAIST Professor Exposes Structural Dynamics of Protein in Solution
-- Dr. Hyot-Cherl Ihee"s 3-Year Research Is Valuable in Pharmaceutical Application Prof. Hyot-Cherl Ihee and his team at the Department of Chemistry, KAIST, has successfully unveiled the structural dynamics of protein in solution as a result of more than three years" research work. Nature Methods, a sister publication of the authoritative science magazine Nature, published the treatise, titled "Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering" in its Sept. 22 online edition. The research paper will be carried in the magazine"s printed version in its October edition, according to Dr. Lee who is its correspondence author. In May 2005, Prof. Ihee successfully photographed the structural dynamics of protein in solid state and his findings were published in the Proceedings of National Academy of Science of the United States. As protein normally exists in human body in solution, not in solid state, he directed his research to developing the technology to capture protein"s dynamics in resolved state. In July that year, Prof. Ihee succeeded in measuring the structural changes of simple organic molecules in real time. He further developed the technology to uncover the structural dynamics of hemoglobin, myoglobin and cytochrome C. Prof. Ihee"s research, helped with the Education-Science-Technology Ministry"s Creative Research Promotion Fund, can be applied to new pharmaceutical development projects as well as nanotechnology development, according to KAIST officials. Prof. Ihee who earned his doctorate at California Institute of Technology in 1994 began teaching at KAIST in 2003. He won the Young Scientist Award given by the Korean government in 2006.
2008.09.22
View 12599
Prof. Chung Named Winner of 2008 KAIST Scientific Award
Professor Chung Jong-Kyeong of the Department of Biological Sciences was named the winner of the 2008 KAIST Scientific Award. The prize was awarded by KAIST President Suh Nam-Pyo during the 37th KAIST anniversary ceremony on Feb. 16. Chung was cited for disclosing the new anti-cancer aspect of adenosine monophosphate-activated protein kinase (AMPK). His papers, published in the science magazine Nature in 2006 and again in 2007, revealed that the protein could be used to treat certain forms of cancer, as well as prevent malignant growths.
2008.02.28
View 12236
Professor Sang-Yup Lee publishes a requested paper in Nature Biotechnology
Professor Sang-Yup Lee publishes a requested paper in Nature Biotechnology “The era of commercialized bioplastic is coming” Disclose an opinion as specialist at a requested paper in Nature Biotechnology, October 2006 A team led by Barbel Friedrich, Professor of Humboldt-Universitat zu Berlin, and Alexander Steinbuchel, Professor of West falische Wilhelms-Universitat Munster, found out the entire genome sequence of the typical bioplastic-producing microorganism ‘Ralstonia eutropha’ and published a paper on it in Nature Biotechnology, October 2006. As the entire genome sequence of the typical bioplactic-producing microorganism has been discovered, it is expected that the efficient production of bioplastic will be available through strain improvement at a more systematic level. Regarding this paper, Nature Biotechnology requested world-renowned scholar Sang-Yup Lee, LG Chemical Chair-Professor of KAIST Chemical and Biomolecular Engineering Department, an expert analysis on the future of bioplastic production as a result of the deciphering of the genome sequence, and Professor Lee revealed his opinion at ‘News and Views’ in Nature Biotechnology, October 2006, issued on October 10. In the analysis, he insisted, “The deciphering of the genomes of Ralstonia means to pave the way for the improvement of strains at a system level by combining simulation through various omics and imaginary cells and engineering at a genome level. It will be possible to produce plastic with desired properties by altering the components of plastic as desired and produce bioplastic, more efficient and economical than have been reported so far, through the optimization of metabolic flow.” Professor Lee is a world-renowned scholar in the bioplastic field, who has presented about 70 SCI papers in the field. He created a word ‘Plastic Bacteria’ at Trends in Biotechnology in 1996 and published an expert paper regarding E.Coli Plastic at Nature Biotechnology in 1997. He is now performing a research concerning the improvement of bioplastic-producing strains as an example of a research employing a systematic method for the system biological research and development project of the Ministry of Science and Technology. The followings are the contents of Professor Lee’s paper concerning microorganism plastic published at ‘News and Views’ in Nature Biotechnology, October 2006. - Polyhydroxyalkanoate (PHA) is a high molecule that numerous microorganisms accumulate in their own cells as energy storage substance when they are rich in carbonic resources, but poor in the other growth factors. The PHA high molecule is polyester, in which the unit substances (unit chemicals) are ester-bonded, and has been studied worldwide about twenty years before. However, PHA’s worse properties than petrochemical plastic and extremely high production cost have prevented its commercialization. The production cost of PHA was 15 dollars per kg in 1980’s, twenty times higher than the price of polypropylene. Sang-Yup Lee, LG Chemical Chair-Professor of KAIST Chemical & Biomolecular Department’s BK21 Project Group, has performed a research concerning the efficient production of microorganism plastic through the combination of metabolic engineering and fermentation process under the support of the Ministry of Science and Technology, and developed a process that lowers the production cost of PHA to 2-3 dollars per kg. He also has developed PHA-producing bacteria, efficient enough to fill plastic tightly, and named it ‘Plastic Bacteria’. - The unprecedented rise of oil price for the past two years activated the researches on Bio-based energies and chemical production globally. PHA is also regaining attentions although the researches on it have been withered so far due to its poor economical efficiency and properties. The result of the genome deciphering of the typical plastic-producing microorganism ‘Ralstonia eutropha’ published by a German research team in Nature Biotechnology, October 2006 suggests huge meanings. That is, it will provide a blueprint over the metabolic activities of the bacteria and thus enables more systematic strain improvement. - Eyeing on these facts, Nature Biotechnology requested Professor Sang-Yup Lee an expert analysis, and Professor Lee analyzed that there would be a dramatic development of microorganism plastic production through the application of the system biological engineering method, which is now being performed actively by Professor Lee at KAIST. In the analysis, Professor Lee revealed, “As the genome sequence has been found out, it becomes possible to establish metabolic network at a genome level, and since simulation becomes available, numberless trial and errors and experiments can be replaced with imaginary experiments rapidly. In addition, It makes the more efficient development of strains possible by fusion-analyzing the omics result such as various transcripts, proteins, metabolites, etc.” He also expected that it would be possible to produce tailor-made PHA having desired properties through metabolic engineering as well as the efficient production of plastic. Besides, he prospected that his research on the production of optically pure hydroxyl carboxyl acid, Professor Lee’s international patent right, would gain driving forces and technical development would be made rapidly at biological hydrogen production, production, dissolution and application of aromatic compounds, etc. by featuring this strain. - Recently, Metabolic and ADM, U.S. companies, jointly started to produce PHA at a commercialization level, and Brazil having rich natural resources is commercializing PHA, following Bio-ethanol. In addition, Japan and Germany having a bunch of research performance in this field, and Australia having rich biomass are also performing consistent researches on PHA’s commercialization. Professor Lee prospected, “With the finding out of the genome sequence of the typical bioplastic-producing microorganism, competition for commercialization will be fiercer among nations through the development of efficient production systems.” - Professor Lee prospected that as the efficient production of PHA becomes possible, the production of plastic from various renewable ingredients (cellurose, starch, suger, etc.) through microorganism fermentation would be made practically and the white biotechnologies of existing chemicals would gain more power. He also said, “Korea also will have to try to secure the production technologies and industry of Bio-based chemicals through strategic cooperation with resource powerfuls, etc. on the basis of the technical dominancy in some system metabolic engineering fields.” - ‘News and Views’ in Nature Biotechnology is a section that publishes analyses of world-renowned specialists in the corresponding fields over the contents of some papers having great influences among papers published in the issue. KAIST Professor Sang-Yup Lee has published his second expert analysis of ‘Deciphering bioplastic production’ in the volume of October 2006, following the first paper ‘Going into the era of E.Coli plastic’.
2006.10.23
View 15008
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3