본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Graduate
by recently order
by view order
Educating for Sustainability: KAIST's Graduate Schools of EEWS and Green Growth
At the World Economic Forum’s (WEF) Annual Meeting (Davos Forum) January 17-20, 2017 in Davos, Switzerland, the International Sustainable Campus Network (ISCN) and the Global University Leaders Forum (GULF) shared exemplary case studies for teaching “sustainability” on campuses, which were implemented by 30 leading universities around the world. KAIST President Sung-Mo Kang participated in the meeting and introduced two of the university’s graduate schools and their main activities in 2016: The Graduate School of EEWS (energy, environment, water and sustainability) and The Graduate School of Green Growth. President Kang explained that the EEWS Graduate School, created in 2009, represents KAIST’s commitment to interdisciplinary education and research, addressing key issues of today’s global challenges including energy, environment, and water for a sustainable society. The graduate school hosted its first international forum last October, “The EEWS 2016: Progress and Perspective of Energy Science and Technology.” Over 200 participants from Korea and across the world discussed and learned about recent advances, challenges, and future opportunities in energy science and technology, such as the development of sustainable energy harvesting and storage, catalytic energy conversion technology, green chemical materials, and photocatalytic systems for sustainable water treatment. He also presented the Green Growth Graduate School as KAIST’s initiative to a build global alliance for sustainable growth. Established in 2013 in the College of Business, the graduate school provides world-class education and research on green business, finance, and policy. Among many international conferences and workshops it hosts, the school has held the Seoul Climate Energy Conference annually since 2014. Last year alone, over 400 international participants including climate and energy policy makers and scholars gathered at the conference and strengthened partnerships with the global community. The school has been an active member of international organizations that advocate for green economies and sustainable development, the Global Green Growth Institute and the United Nations Environment Programme, for example. President Kang noted that KAIST has been at the forefront of formulating and implementing holistic and cross-disciplinary approaches to foster learning and research environments in which university members can take on global issues, which are critical to humanity and our ecosystem, and work toward a more sustainable future. Founded in 2007, the ISCN is a non-profit association of globally-leading colleges and universities representing over 30 countries and working together to holistically integrate sustainability into campus operations, research, and teaching. Created in 2006, the GULF is one of the WEF’s expert communities, which consists of top leaders from 26 global universities, including the University of Cambridge, Peking University, Stanford University, and the Swiss Federal Institute of Technology in Zurich. The GULF offers in-depth discussions and exchange of ideas on the future of higher education and the role of science in society. Since 2012, KAIST has been a member of GULF, the only university from Korea. The ISCN and GULF have held a meeting each year at the Davos Forum since 2011 to share information, insights, and best practices for achieving sustainable campus operations and integrating sustainability into research and teaching. To see the full report on the 2017 WEF ISCN-GULF case studies, please go to http://www.international-sustainable-campus-network.org/downloads/general/462-educating-for-sustainability/file.
2017.01.25
View 9876
Adsorbent That Can Selectively Remove Water Contaminants
Professor Cafer T. Yavuz and his team at the Graduate School of Energy, Environment, Water, and Sustainability (EEWS) have developed an adsorbent that can selectively capture soluble organic contaminants in water. This water treatment adsorbent is a fluorine-based nanoporous polymer that can selectively remove water-soluble micromolecules. It has the added advantage of being cheap and easily synthesized, while also being renewable. The results of this research have been published online in Nature Communication on November 10, 2016. The research paper is titled “Charge-specific Size-dependent Separation of Water-soluble Organic Molecules by Fluorinated Nanoporous Networks.” (DOI: 10.1038/ncomms13377) Water pollution is accelerating as a result of global industrial development and warming. As new materials are produced and applied in the agricultural and industrial sectors, the types of contaminants expelled as sewage and waste water are also becoming diverse. Chemicals such as dyes and pesticides can be especially harmful because they are made up of small and highly soluble organic particles that cannot be completely removed during the water treatment process, ultimately ending up in our drinking water. The current conventional water treatment systems utilize processes such as activated carbon, ozonolysis, and reverse osmosis membrane. These processes, however, are designed to remove larger organic molecules with lower solubility, thus removal of very small molecules with high solubility is difficult. In addition, these micromolecules tend to be charged, therefore are less easily separated in aqueous form. The research team aimed to remove these small molecules using a new adsorbent technology. In order to remove aqueous organic molecular contaminants, the team needed an adsorbent that can adsorb micro-sized molecules. It also needed to introduce a chemical function that would allow it to selectively adsorb molecules, and lastly, the adsorbent needed to be structurally stable as it would be used underwater. The team subsequently developed an adsorbent of fluorine-based porous organic polymer that met all the conditions listed above. By controlling the size of the pores, this adsorbent is able to selectively adsorb aqueous micromolecules of less than 1-2 nm in size. In addition, in order to separate specific contaminants, there should be a chemical functionality, such as the ability to strongly interact with the target material. Fluorine, the most electronegative atom, interacts strongly with charged soluble organic molecules. The research team incorporated fluorine into an adsorbent, enabling it to separate charged organic molecules up to 8 times faster than neutral molecules. The adsorbent developed by Professor Yavuz’s team has wide industrial applications. It can be used in batch-adsorption tests, as well as in column separation for size- and charge-specific adsorption. Professor Yavuz stated that “the charge-selective properties displayed by fluorine has the potential to be applied in desalination or water treatment processes using membranes." This paper was first-authored by Dr. Jeehye Byun, and the research was funded by KAIST’s High Risk High Return Program and the Ministry of Science, ICT and Future Planning of Korea’s Mid-Career Researcher Program, as well as its Technology Development Program to Solve Climate Change. Figure 1. Diagram conceptualizing the process of charge- and size-specific separation by the fluorine-based porous polymer adsorbent Figure 2. Difference in absorbance before and after using a porous fluorine polymer column to separate organic molecules Figure 3. Adsorption properties of a fluorine polymer according to the charge and size of organic molecules
2017.01.17
View 10822
Controlling DNA Orientation Using a Brush
Professor Dong Ki Yoon’s research team in the Graduate School of Nanoscience and Technology has developed a technique for producing periodic DNA zigzag structures using a common make-up brush. The results of the research, first-authored by Ph.D. student Yun Jeong Cha and published in Advanced Materials (online, November 15, 2016), has been highlighted in the hot topics of “Liquid Crystals.” There exist various methods for synthesizing DNA-based nanostructures, but they commonly involved complex design processes and required expensive DNA samples with regulated base sequences. Using DNA materials extracted from salmon, the research team was able to produce a nanostructure with a well-aligned zigzag pattern at one-thousandth of the usual cost. The team used a commercial make-up brush bought at a cosmetics store, and with it, applied the salmon DNA in one direction onto a plate, in the same way paint is brushed onto paper. Using a brush with a width of several centimeters, the team aligned DNA molecules of 2 nanometers in diameter along the direction of the brush strokes. As the thin and dense film of DNA came into contact with air, it lost moisture. An expansive force was created between the dried film and the plate. This force interacted with the elastic force of DNA and caused undulations in the uni-directionally aligned DNA molecules, which resulted in a regular zigzag pattern. The zigzag DNA’s base sequences could not be controlled because it was extracted from biological sources. However, it has the advantage of being cheap and readily available without compromising its structural integrity and provides a very regular and intricate structure. This kind of well-ordered DNA structure can be used as template because it can guide or control versatile guest functional materials that are applied to its surface. For example, it can align liquid crystals used in displays, as well as metallic particles and semi-conductors. It is expected that this capacity can be extended to optoelectric devices in the future. Professor Yoon remarked that “these findings have special implications, as they have demonstrated that various materials in nature aside from DNA, such as proteins, muscle cells, and components of bones can be applied to optoelectric devices.” This research has been carried out with the support of the Korea National Research Foundation’s Nanomaterials Fundamental Technology Development Program and the Pioneer Research Center under the High-tech Convergence Technology Development Program. Source: "Control of Periodic Zigzag Structures of DNA by a Simple Shearing Method" by Yun Jeong Cha and Dong Ki Yoon (Advanced Materials, November 15, 2016, DOI: 10.1002/adma.201604247) Figure 1. Diagram showing the well-ordered zigzag structure of DNA, and the internal molecular orientation Figure 2. (Left) Unaligned DNA (Right) Aligned DNA after being brushed and dried Figure 3. Control of the periodicity of the DNA zigzag patterns using micro-channel plates Figure 4. Diagram representing the control of orientation of liquid crystal materials applied on a zigzag DNA template, and a polarized optical microscope image
2017.01.10
View 7106
Science, IT & Culture Volunteering Team at Cambodia
The Science, IT and Culture Volunteering Team, which is composed of 17 undergraduates, is visiting Cambodia January 1 to 16. Based at Hosanna High School in Phnom Penh, the KAIST volunteering team will participate in diverse science and IT classes as well as cultural events for Cambodian high school students. The KAIST volunteering service is designed to improve Cambodian students’ science education including the areas of physics, chemistry, biology, earth science, as well as an increased exposure to IT technologies. For this service, the volunteering team has prepared for three months, making syllabi for the science classes in addition to planning Arduino IT classes and cultural performances, including K-pop dances and Korean traditional games. The team will present various science experiments including smart electric fan and mini vehicles using Arduino. Before departing, the students made great efforts to ensure this service would be a success by taking a basic Khmer language class and studying safety education. Se-Woong Oh, the head of the team said, "All our members are very excited to have the chance to share our knowledge with Cambodian students and help them learn science and IT technology. We hope this service will serve as an opportunity to understand a different culture as well. We made every effort to prepare for an activity we believe in." (KAIST volunteer team with Hosanna High School students in Phnom Penh, Cambodia.)
2017.01.10
View 5245
KAIST Undergraduates Win the Innovative Design Contest 2016
A team of KAIST students, consisting of five undergraduates (Do-Hoon Kwon, Tae-Hyun Kim, Hak-Gi Do, Hyun-Joo Lee, and Jong-Ho Jeong) from the Department of Mechanical Engineering, won the grand prize at the Innovative Design Contest held at Osaka University in Japan on December 12-13, 2016. The event took place during the 16th Asia Design Engineering Workshop (A-DEWS). For this year’s contest, a total of ten student teams from such countries as Korea, Japan, Taiwan, and Malaysia participated, and Team KAIST earned the highest scores. The five KAIST students, all taking the course entitled “Production of Creative Systems,” developed a manual wheelchair accessory called “Safe Attachable Wheelchair Assistive Device in Capstone Design (SAWADiCap). SAWADiCap is a detachable auxiliary power device that increases the range and mobility of manual wheelchairs. The device can easily be installed and removed, compared to existing add-on attachments for wheelchairs. Users can also enjoy similar advantages offered by powered wheelchairs at a lower cost. In their presentation on the device, the KAIST students introduced their design to improve the power of manual wheelchairs employing the magnetic reinforcement effect and to include the safety features necessary for users to install or operate the device. Do-Hoon Kwon said, “Our team had a great experience participating in the contest—we met people with diverse backgrounds and expanded our understanding in the field.” Professor Seibum B. Choi of the Mechanical Engineering Department, who advises the KAIST team, added, “I hope our technology can help the spread of affordable wheelchairs and increase mobility for the disabled.” Established in 2000, A-DEWS is held annually by the Asian branch of the Design Engineering Workshop to provide an international forum for researchers and practitioners in the field of design engineering by facilitating the exchange of recent research results and sharing knowledge about design strategies and methods. This year’s theme for the workshop was “Innovation of Life.” A-DEWS hosts the Innovative Design Contest to encourage young engineers, researchers, and students who are creating innovative products, services, and product-services and to show appreciation for their efforts. Pictured below from left to right are Hyun-Joo Lee, Do-Hoon Kwon, Jong-Ho Jeong, and Hak-Gi Do.
2017.01.03
View 10310
President Kang Welcomes the New Year with an Upbeat Message
KAIST held a kick-off ceremony on January 2 at the Auditorium on campus to officially welcome the beginning of 2017. In his New Year’s speech, President Sung-Mo Kang, who is slated to complete his term in February, recalled some of the major achievements accomplished under his leadership in the past four years. Upon his inauguration in 2013, President Kang set a goal for KAIST to become a global top 10 university and established Quantum Jump Strategies for qualitative growth through innovative education and research programs. Such initiatives have laid the foundation for KAIST to emerge as one of the world’s best “student-centered, faculty-driven, and innovative research universities.” In 2016, Thomson Reuters named KAIST the world’s sixth most innovative university. President Kang promoted a campus culture that cherishes creativity and a challenging spirit and encouraged university members to increase their interest in entrepreneurship and social responsibility. He reorganized academic structures to offer interdisciplinary education and revamped administrative organizations to streamline university management. On a softer note, he created various channels of communication within the university community to make the campus “happier and united,” which included the establishment of the Customer Satisfaction Center, the Center for Ethics and Human Rights, and coffee meetups. He promised that KAIST would remain committed to leading the frontier of higher education and research, nationally and globally. The university will establish the Graduate School for Interdisciplinary Medical Science, continue to provide university members with opportunities to learn entrepreneurship, extend its efforts to upgrade campus infrastructures, and strive to globalize and diversify the campus. Finally, President Kang praised the tremendous support KAIST has received from across Korea and the globe, including the members of KAIST and its alumni, noting that there were more than 26,000 donations made to the university during his presidency. The full text of President Kang’s New Year message follows below: President Kang's New Year Message Dear Members of KAIST, It is 2017, and the year of the rooster has dawned on us. May you and your family enjoy good health and happiness in the new year, and I hope that you will all fulfill your dreams. In return for the love and trust of the nation’s citizens, KAIST will continue to do its best. Following my inauguration in 2013, I established Quantum Jump Strategies in the first half of my term (2013 to 2014), and I also created a united KAIST during this period. In the second half (2015 to 2016), I promoted innovation through qualitative growth. KAIST has seen astonishing growth in the past four years, and this has laid the foundation to emerge as one of the world’s best Student-Centered, Faculty-Driven, and Innovative Research Universities. Creativity and challenge are the key words serving as the driving force behind national progress. KAIST’s qualitative growth has been achieved through continuous innovation of education and research, promotion of an entrepreneurial spirit, and exercising of social responsibility. KAIST’s education is constantly improving. It has developed a future-oriented educational platform, commensurate with its reputation as a world-class university, after several rounds of reorganization. The interdisciplinary education system at KAIST, based on a harmony of academic excellence and creativity, facilitates efficient operation of its broad undergraduate education and interdisciplinary graduate curriculum. Through a π-shaped education system, the students solidify their foundation at the undergraduate level, and go on to graduate school to gain more wisdom and knowledge through interdisciplinary education and research. Upon graduation, they are recognized as irreplaceable, talented members of society. The newly introduced capstone design curriculum has shifted the paradigm of Korea’s engineering education, placing greater emphasis on real-world applications. With the opportunity to plan realistic projects and identify problems, the students will acquire creativity, practical skills, teamwork, and leadership. Under Education 3.0, KAIST has implemented a student-centered education system. Students participate in self-directed learning using online contents provided before lectures, and gain knowledge and problem-solving skills through collaborative learning with team members during classes. In addition, KAIST is fulfilling its social responsibility by making its lectures available to the public through KAIST’s Massive Open Online Course (MOOC). KAIST is among the world’s top universities in terms of research capacity. The university has been highly ranked by QS and THE for its innovative education and research, and it was recently named by Thomson Reuters as the world’s sixth most innovative university. To ensure continuous developments, KAIST must perform sustainable research for the long run. Ideas aimed at improving humanity must be continuously produced, and the university must acquire the necessary resources to support such research. KAIST should promote a research culture that assesses researchers based on their diligence and conscientiousness rather than how successful they are. The KAIST Grand Challenge 30 Project was launched for KAIST to resolve major issues faced by humanity and to spread its culture of innovation to all. To acquire global competitiveness in the field of biological sciences, KAIST is planning to establish the Graduate School of Interdisciplinary Medical Science in Sejong. From 2018, the government will allocate a budget for the graduate school, which fared well in the preliminary feasibility study. Beginning with the Graduate School of Interdisciplinary Medical Science, KAIST will establish a system for innovative education and research in Sejong, and further strengthen its capacities. KAIST has worked hard to instill an entrepreneurial spirit in its students. It has provided students with many opportunities to learn entrepreneurship, so as to enhance the economic and social value of its activities in education and research. Through the Institute for Startup KAIST (ISK), the university supports students in all stages of entrepreneurship, from ideation to commercialization. The Master of Entrepreneurship & Innovation at the K-School is jointly operated by several departments. Thanks to its active efforts in promoting entrepreneurship such as the opening of ISK Pangyo and the offering of the Social Entrepreneurship MBA (SEMBA), KAIST has produced the highest number of student entrepreneurs in Korea. KAIST’s innovative pursuits in its administration have been highly regarded by organizations around the world. The tenure system, introduced for the first time in Korea, has now stabilized. Its English-only lecture policy and tuition subsidy by GPA have been improved based on feedback from students and experts. KAIST went through a major administrative reorganization in 2013. The reorganization, introduced to integrate similar functions and simplify the decision-making process, enabled KAIST’s administration to adapt flexibly to changes, become function-oriented, assume roles more rationally, and to be more responsive to the needs of customers. With the opening of the Administration Development Education Center, KAIST has improved the quality of administrative services by providing staff in administrative positions with more opportunities for self-development and to attend lectures that improve the efficiency of administrative operations. The university is actively reflecting the opinions of its members through various channels of communication. The school marked a first in Korea when it implemented an ombudsman to mediate between parties in case of conflict. The Customer Satisfaction Center was opened to improve the quality of services on campus, and the Center for Ethics and Human Rights to prevent the infringement of human rights. I have tried to make myself more available to all members of KAIST, so as to freely interact with them without having to arrange separate meetings. The opening of the office of the president, coffee meetups, forums with undergraduate and graduate students, and e-mail exchanges have been tremendously helpful in gaining valuable feedback and improving university operations. KAIST is strongly supported by the citizens of Daejeon. The university has strengthened its ties with Daejeon Metropolitan City, Yuseong District Office, and Chungnam National University. Its efforts have paid off with the opening of a new path connecting Chungnam National University and KAIST, and the KAIST Bridge in front of the main gate. KAIST has encouraged students to reach out to society by serving as tutors for the socially neglected and helping out in making kimchi. By improving its infrastructure in the past four years, KAIST has now established high-quality infrastructure to support its education and research. The Chung Moon Soul Building 2 is now complete, the Academic Cultural Creative Building is underway, and the Main Library is being upgraded. New constructions or remodeling on campus include the opening of Startup KAIST Studio 2, opening of the Biomedical Research Center (Pharmacy), remodeling of International Village C, remodeling of the Semiconductor Building, remodeling of the Auditorium, remodeling of the Mechanical Engineering Building, remodeling of the Startup Village, remodeling of Haejeong Hall and Buildings No. 8 and 9, remodeling of the Outdoor Theater, remodeling of Hwaam Dormitory (tentative), establishment of an eco campus (planting of pine trees), establishment of a safe campus (improvements to roads and pedestrian roads). Besides expanding its infrastructure, KAIST has exerted efforts to make efficient use of existing space by relocating IBS and the Graduate School for Green Growth to Munji Campus. KAIST strives to create a more accommodating atmosphere for international members and to embrace diversity. It has reached its goal of having international faculty, international students, and female faculty account for 10% each of the total school population. Now, it is time to improve this 10:10:10 initiative to a 20:20:20 initiative. In addition, it must continue to improve the common kitchen at Nanum Hall, communicate with international members through regular podcasts, open a Halal Food Cafeteria, establish a bilingual campus, offer joint degrees with outstanding universities, expand overseas internship opportunities, enhance gender equality, and improve the women’s lounge and childcare facilities. In the near future, I believe that KAIST will be a center of attention both at home and abroad. It has attracted an increasing number of undergraduate applicants in the past four years, and admits highly qualified freshmen each year. Students of all levels, including freshmen, have shown great pride in studying at KAIST. Recently, the university has received a high number of donations from students, alumni, and parents. There were more than 26,000 donations in the past four years, amounting to a total of 70.8 billion won. KAIST is also serving as a benchmark institute for similar organizations in and outside of Korea. Some authorities have even requested KAIST to open branch campuses in their countries. These results would not have been possible without your efforts to create a happy campus. Dear Members of KAIST, This New Year’s greetings will be my last as the president of KAIST. The Board of Trustees is selecting a new president, whose inauguration shall fall on February 23, 2017. I will look back fondly on my past four years at KAIST. During the remainder of my term as the president, I will concentrate my efforts to create a happy campus for each and every member. It was a great pleasure and honor to serve as President for the past four years. I am sincerely grateful to all members for playing their part in nurturing KAIST into the world’s best university and in creating a happy campus. You are the future of KAIST, and the driving force behind Korea. I believe you have what it takes to lead developments in the country, and I encourage you to dream bigger. May 2017 be a year in which all members of KAIST fulfill their dreams. Let us work towards our goal of becoming the hub of the fourth industrial revolution and one of the world’s best Student-Centered, Faculty-Driven Research Universities.
2017.01.03
View 8507
KAIST Ph.D. Candidate Wins the Next Generation of Engineers Award
Joo-Sung Kim, a doctoral student at the EEWS (Environment, Energy, Water and Sustainability) Graduate School won the inaugural Next Generation of Engineers Award in Leadership on December 14, 2016. The National Academy of Engineering of Korea hosts this award to support creative and ambitious students who have the potential to become leaders in engineering and who will serve as role models for future Korean engineers. Based on the recommendations of university professors in engineering and members of the academy, seven students are selected for the award in the categories of leadership and entrepreneurship. With his research focus on the development of high-performance, next-generation secondary cells for wearable devices such as smart watches, health bands, and smart eyewear, Joo-Sung created a startup, Lithium-ion Battery Energy Science and Technology (LiBEST), Inc. He plans to base his company at the Office of University and Industry Cooperation, KAIST, where he can receive assistance for launching the mass-production system for his technology. His adviser, Professor Jang-Wook Choi of the EEWS Graduate School, noted, “Joo-Sung has been a great student who has a strong sense of curiosity and perseverance. The award is the by-product of his hard work.” “I have always enjoyed my work and study as a researcher, but eventually would like to expand my career into business based on the results of my research. It would be wonderful if I could become a businessman like Elon Musk, Masayoshi Son, or Ma Yun and create a role model for aspiring engineers in Korea by combining science and technology with business demand to create social values that benefit many people,” Joo-Young said.
2016.12.26
View 11506
EEWS Graduate School Team Receives the S-Oil Best Paper Award
Professor Hyungjun Kim and Dr. He-Young Shin from the EEWS (Energy, Environment, Water and Sustainability) Graduate School at KAIST received the Best Paper Award in Chemistry from S-Oil, a Korean petroleum and refinery company, on November 29, 2016. Established in 2011, the S-Oil Best Paper Awards are bestowed annually upon ten young scientists in the fields of five basic sciences: mathematics, physics, chemistry, biology, and earth science. The scientists are selected at the recommendation of the Korean Academy of Science and Technology and the Association of Korean Universities. The awards grant a total of USD 230,000 for research funding. Dr. Shin, the lead author of the awarded research paper, said, “My research interest has been catalyst studies based on theoretical chemistry. I am pleased to accept this award that will support my studies, and will continue to research catalyst design that can predict parameters and integrate them into catalytic systems.” Professor Hyungjun Kim (left) and Dr. He-Young Shin (right)
2016.12.23
View 11231
The Antibody That Normalizes Tumor Vessels
Researchers also discover that their antisepsis antibody reduces glioma, lung and breast cancer progression in mice. A research team at the Center for Vascular Research within the Institute for Basic Science (IBS) discovered that the antisepsis antibody ABTAA (Ang2-Binding and Tie2-Activating Antibody) reduces tumor volume and improves the delivery of anti-cancer drugs. Published in Cancer Cell, this study demonstrates that ABTAA restores the structural and functional integrity of tumor blood vessels in three different tumor models: breast, lungs, and brain. Blood vessels inside and around an established tumor can be described as a chaotic and dysfunctional labyrinth. While the inner walls of healthy blood vessels are surrounded and supported by endothelial cells and other cells called pericytes, in the established tumor, the endothelial junctions are broken apart and pericytes are also detached. Blood flow into and from the tumor is severely retarded and tumor vessels lacking an intact vessel wall become leaky. This microenvironment causes limited drug delivery to the tumor and leads to inadequate oxygen supply (hypoxia) and even metastasis. The research team led by Professor Gou-Young Koh at KAIST’s Graduate School of Medical Science and Engineering found that the antibody ABTAA normalizes the tumor vessels and hence, change the whole tumor microenvironment. “We call it normalization of tumor vessels, because it resembles closely the wall architecture of healthy, normal vessels,” explains PARK Jin-Sung, first author of the study. And continues: “Tumor can adapt to hypoxia and get more aggressive, so we tried to prevent this transition by normalizing tumor vessels. ABTAA changes the whole tumor environment, oxygenation status and level of lactate, so that the immune cells and drugs can reach the core regions of the tumor more easily. In this way, we create a favorable ground for tumor treatment.” In an attempt to generate antibodies targeting the protein Ang2, which is specifically expressed by endothelial cells in stressful conditions like in tumor, the team unexpectedly discovered that ABTAA has a peculiar way of working and a dual function. ABTAA indeed not only blocks Ang2, but also activates Tie2 at the same time. Tie2 is a receptor present on the cell membrane of endothelial cells. ABTAA causes Ang2 to cluster together and to strongly activate Tie2 receptors. “If we activate Tie2, we can efficiently normalize tumor vessels, enhance drug delivery and change the whole microenvironment,” explains KOH Gou Young, Director of the Center for Vascular Research. Several pharmaceutical companies are developing Ang2-blocking antibodies to cure cancer. However, even if these antibodies significantly inhibit tumor progression, they do not stop tumor hypoxia. Moreover, most of the anti-cancer drugs target the tumor at its early stage, when tumors are still hard to diagnose. ABTAA, instead, works with tumors that are already rooted: “When the tumor is established, hypoxia is the main driver of tumor progression. So, if we eliminate hypoxia, we make the tumor milder, by reducing its progression and metastasis,” comments Koh. Figure: Schematic drawing of a blood vessel around tumors before and after treatment with ABTAA. The picture above shows a typical tumor vasculature characterized by damaged walls, red blood cells leakage and detached pericytes. Activating Tie2 on endothelial cells with the antibody ABTAA restores the normal vessel architecture: endothelial and pericytes on the vessel walls are stabilized, the delivery of blood is improved, and the anticancer drugs are more likely to reach the tumor core. The researchers tested ABTAA in mice with three different types of tumors that show high levels of Ang2: glioma (a type of a brain tumor), lung carcinoma, and breast cancer. They also compared the effect of ABTAA with ABA, another antibody that blocks Ang2 but misses the Tie2 activating properties. In all three cases, ABTAA was superior to ABA in inducing tumor vessel normalization, which led to a better delivery of the anti-cancer drugs into the tumor core region. Glioma is one of the so-called intractable diseases, because of its poor prognosis and treatment. Professor Koh’s team found that the glioma volume was reduced 39% by ABTAA and 17% by ABA. ABTAA profoundly reduced vascular leakage and edema formation in glioma through promoting vascular tightening. Moreover, when ABTAA was administered together with the chemotherapeutic drug temozolomide (TMZ), the tumor volume reduces further (76% by ABTAA+TMZ, 51% by ABA+TMZ, and 36% by TMZ). In the Lewis Lung Carcinoma (LLC) tumor model, the team administered ABTAA together with a chemotherapeutic drug called cisplatin (Cpt) and observed a greater suppression of tumor growth (52%) compared with the controls and increased overall survival. Moreover, ABTAA+Cpt led to a marked increase in necrotic area within tumors. Finally, in a spontaneous breast cancer model, ABTAA delayed tumor growth and enhanced the anti-tumor effect of Cpt. Courtesy of the Institute for Basic Sciences (IBS) Figure: The antibody ABTAA alone and in combination with other anti-cancer drugs have a beneficial effect in reducing tumor volume. ABTAA was tested in mice with brain tumor (glioma), lung or breast cancer. The image shows the improvements: reduction in glioma tumor size, reduction in metastatic colonies in lung tumor and decrease in necrotic regions in breast tumor. In the future, the team would like to further understand the underlying relationship between faulty blood vessels and diseases. “We would like to apply this antibody to an organ that is rich in blood vessels, that is the eye, and see if this antibody can be useful to treat eye diseases such as age-related macular degeneration and diabetic retinopathy,” concludes Koh. Professor Gou-Young Koh (left) and Jin-Sung Park (right)
2016.12.16
View 9291
KAIST's Board of Trustees Reappoints Dr. Jang-Moo Lee as Chairman
Dr. Jang-Moo Lee, the incumbent Chairman of the KAIST Board of Trustees, has been re-elected to head the office. His term will begin from the date of approval by the Minister of Science, ICT and Future Planning of Korea and will last for three years. Dr. Lee received his undergraduate and master’s degrees in mechanical engineering from Seoul National University. He later earned his doctoral degree in mechanical engineering from Iowa State University in the United States. Joined the faculty of his alma mater in 1976, Dr. Lee held various posts within the university including the dean of the engineering college. He served as the president of the Association of Korean Engineering Colleges, the founding chairman of the Korea Evaluation Institute of Industrial Technology, the president of the Korean Society of Mechanical Engineers, the 24th president of Seoul National University, and the 13th president of the Korean Council for University Education. He now serves as the president of the National Science and Technology Council of Korea and the chairman of Climate Change Center’s Board of Directors. Dr. Lee has received numerous honors and awards, among others, the Academic Award of the Korean Society of Mechanical Engineers (1985), the Order of Science and Technology Merit from the Korean government (2005), the National Academy of Sciences Award (2005), and the Order of Service Merit in Blue Stripes (2010) from the Korean government. He was also selected as the Alma Mater Proud from Kyunggi High School in 2011.
2016.12.15
View 4451
KAIST's Doctoral Student Receives a Hoffman Scholarship Award
Hyo-Sun Lee, a doctoral student at the Graduate School of EEWS (Environment, Energy, Water and Sustainability), KAIST, is a recipient of the 2016 Dorothy M. and Earl S. Hoffman Scholarships presented by the American Vacuum Society (AVS). The award ceremony took place during the Society’s 63rd International Symposium and Exhibition on November 6-11, 2016 in Nashville, Tennessee. Lee is the first Korean and foreign student to receive this scholarship. The Hoffman Scholarships were established in 2002 to recognize and encourage excellence in graduate studies in the sciences and technologies of interest to AVS. The scholarships are funded by a bequest from Dorothy M. Hoffman, who was a pioneering member of the Society of Women Engineers and served as the president of AVS in 1974. Lee received the scholarship for her research that detects hot electrons from chemical reactions on catalytic surface using nanodevices. Nano Letters, an academic journal published by the American Chemical Society, described her work in its February 2016 issue as a technology that allows quantitative analysis of hot electrons by employing a new nanodevice and therefore helps researchers understand better the mechanism of chemical reactions on nanocatalytic surface. She also published her work to detect the flow of hot electrons that occur on metal nanocatalytic surface during hydrogen oxidation reactions in Angewandte Chemie. Lee said, “I am pleased to receive this honor from such a world-renowned academic society. Certainly, this will be a great support for my future study and research.” Founded in 1953, AVS is an interdisciplinary, professional society composed of approximately 4,500 members worldwide. It supports networking among academic, industrial, government, and consulting professionals involved in a range of established and emerging science and technology areas such as chemistry, physics, engineering, business, and technology development.
2016.11.17
View 10585
Robot Drone Man: A
Research Professor Ilhan Bae of the Moon Soul Graduate School of Future Strategy at KAIST created a life-size humanoid robot on a drone platform, which gives users the experience of virtual flight and an opportunity to interact with people at remote locations. Professor Bae calls his new creation a "telepresence robot." This avatar drone is a new application of drone and robotics technology, which extends the reach of human presence and mobility, Professor Bae explained his research. “As a futurist, I forecast that drone technology will soon evolve to become another body for humans, and I wanted to demonstrate this potential application of drones. Avatar drones are especially useful for people who need to meet or manage other people face to face in remote locations,” he said. For example, if elderly people with physical disabilities want to engage in social gatherings, this avatar drone is designed to help them do just that. For more details, please see the link below: Behind the Music: How Robot Drone Man Built His Flying Avatar IEEE Spectrum, November 7, 2016
2016.11.08
View 6524
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 51