본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
Professor Mu-Hyun Baik Honored with the POSCO TJ Park Prize
Professor Mu-Hyun Baik at the Department of Chemistry was honored to be the recipient of the 2021 POSCO TJ Park Prize in Science. The POSCO TJ Park Foundation awards every year the individual or organization which made significant contribution in science, education, community development, philanthropy, and technology. Professor Baik, a renowned computational chemist in analyzing complicated chemical reactions to understand how molecules behave and how they change. Professor Baik was awarded in recognition of his pioneering research in designing numerous organometallic catalysts with using computational molecular modelling. In 2016, he published in Science on the catalytic borylation of methane that showed how chemical reactions can be carried out using the natural gas methane as a substrate. In 2020, he reported in Science that electrodes can be used as functional groups with adjustable inductive effects to change the chemical reactivity of molecules that are attached to them, closely mimicking the inductive effect of conventional functional groups. This constitutes a potentially powerful new way of controlling chemical reactions, offering an alternative to preparing derivatives to install electron-withdrawing functional groups. Joined at KAIST in 2015, Professor Baik also serves as associate director at the Center for Catalytic Hydrocarbon Functionalization at the Institute for Basic Science (IBS) since 2015. Among the many recognitions and awards that he received include the Kavli Fellowship by the Kavli Foundation and the National Academy of Science in the US in 2019 and the 2018 Friedrich Wilhelm Bessel Award by the Alexander von Humboldt Foundation in Germany.
2021.03.11
View 7300
Rare Mutations May Have Big Impact on Schizophrenia Pathology
- Somatic mutations found only in brain cells disrupt synaptic function. - Schizophrenia is a neurodevelopmental disorder that disrupts brain activity, producing hallucinations, delusions, and other cognitive disturbances. Researchers have long searched for genetic influences in the disease, but genetic mutations have been identified in only a small fraction—fewer than a quarter—of sequenced patients. Now a study shows that “somatic” gene mutations in brain cells could account for some of the disease’s neuropathology. The results of the study, led by Professor Jeong Ho Lee at the Graduate School of Medical Science and Engineering in collaboration with the Stanley Medical Research Institute in the US, appeared in Biological Psychiatry. Traditional genetic mutations, called germline mutations, occur in sperm or egg cells and are passed on to offspring by their parents. Somatic mutations, in contrast, occur in an embryo after fertilization, and they can show up throughout the body or in isolated pockets of tissues, making them much harder to detect from blood or saliva samples, which are typically used for such sequencing studies. Recently, more-advanced genetic sequencing techniques have allowed researchers to detect somatic mutations and studies have shown that even mutations present at very low levels can have functional consequences. A previous study hinted that brain somatic mutations were associated with schizophrenia, but it was not powerful enough to cement an association between brain somatic mutations and schizophrenia. In the current study, the researchers used deep whole-exome sequencing to determine the genetic code of all exomes, the parts of genes that encode proteins. The scientists sequenced postmortem samples from brain, liver, spleen, or heart tissue of 27 people with schizophrenia and 31 control participants allowing them to compare the sequences in the two tissues. Using a powerful analytic technique, the team identified an average of 4.9 somatic single-nucleotide variants, or mutations, in brain samples from people with schizophrenia, and 5.6 somatic single-nucleotide variants in brain samples from control subjects. Although there were no significant quantitative differences in somatic single-nucleotide variants between schizophrenia and control tissue samples, the researchers found that the mutations in schizophrenia patients were found in genes already associated with schizophrenia. Of the germline mutations that had previously been associated with schizophrenia, the genes affected encode proteins associated with synaptic neural communication, particularly in a brain region called the dorsolateral prefrontal cortex. In the new analysis, the researchers determined which proteins might be affected by the newly identified somatic mutations. Remarkably, a protein called GRIN2B emerged as highly affected and two patients with schizophrenia carried somatic mutations on the GRIN2B gene itself. GRIN2B is a protein component of NMDA-type glutamate receptors, which are critical for neural signaling. Faulty glutamate receptors have long been suspected of contributing to schizophrenia pathology; GRIN2B ranks among the most-studied genes in schizophrenia. The somatic mutations identified in the study had a variant allele frequency of only ~1%, indicating that the mutations were rare among brain cells as a whole. Nevertheless, they have the potential to create widespread cortical dysfunction. Professor Lee said, “Besides the comprehensive genetic analysis of brain-only mutations in postmortem tissues from schizophrenia patients, this study experimentally showed the biological consequence of identified somatic mutations, which led to neuronal abnormalities associated with schizophrenia. Thus, this study suggests that brain somatic mutations can be a hidden major contributor to schizophrenia and provides new insights into the molecular genetic architecture of schizophrenia. John Krystal, MD, editor of Biological Psychiatry, said of the work, "The genetics of schizophrenia has received intensive study for several decades. Now a new possibility emerges, that in some cases, mutations in the DNA of brain cells contributes to the biology of schizophrenia. Remarkably this new biology points to an old schizophrenia story: NMDA glutamate receptor dysfunction. Perhaps the path through which somatic mutations contribute to schizophrenia converges with other sources of abnormalities in glutamate signaling in this disorder." Professor Lee and the team next want to assess the functional consequences of the somatic mutations. Because of the location of the GRIN2B mutations found in schizophrenia patients, the researchers hypothesized that they might interfere with the receptors’ localization on neurons. Experiments on the cortical neurons of mice showed that the mutations indeed disrupted the receptors’ usual localization to dendrites, the “listening” ends of neurons, which in turn prevented the formation of normal synapses in the neurons. This finding suggests that the somatic mutations could disrupt neural communication, contributing to schizophrenia pathology. - Profile: Professor Jeong Ho Lee Translational Neurogenetics Laboratory ( https://tnl.kaist.ac.kr/) The Graduate School of Medical Science and Engineering KAIST (END)
2021.03.11
View 6741
Upbeat Message for a New Future at President Lee’s Inauguration
KAIST’s 17th President Kwang Hyung Lee reaffirmed his commitment to building a new future preparing for the post-AI era during his inauguration on March 8. The Board of Trustees selected the former provost and executive vice president as the new president, succeeding 16th President Sung-Chul Shin whose four-year term expired last month. In his inaugural address, President Lee proposed a new culture strategy, ‘QAIST’ designed to foster more creative talents and ensure innovative research infrastructure. He said that the best way to stand out as a leading global university is to carve out our own distinctness. The ceremony was live streamed via YouTube due to the social distancing guidelines, with a very limited number of distinguished guests attending. Among them were President Lee’s former student Jung-Ju Kim who started Nexon, now the world’s most popular online game company, and former Chairman of the Board of Trustees Moon-Soul Chung who President Lee worked with when he made the endowment for establishing the Department of Bio and Brain Engineering in 2001 and the Moon Soul Graduate School of Future Strategy in 2013. In his induction speech, Chairman Woo Sik Kim of the Board of Trustees said that President Lee is a proven leader who has deep insight and passion and he will help KAIST make a new leap forward. “I believe that Professor Lee will be the right leader at this critical moment for the university, ushering in a new future for KAIST as it turns 50 this year.” President Lee explained that for the next 50 years, KAIST should double down to identify the challenges humanity faces, then define and resolve them with unyielding innovations in education, research, technology commercialization, and internationalization. “We definitely should pull together to produce sustainable global value that will serve the prosperity and happiness of all humanity, not only our nation. We will become one of the top 10 universities in the world when we realize all these goals. We can live up to the people’s expectations by producing creative global talent, staying ahead of new research topics, and producing corporations that will lead the nation’s industries.” “To this end, I will continue to strive to help us achieve our mission of becoming a ‘Global Value Creative Leading University’ as described in KAIST Vision 2031. I will do my utmost to bring about the ‘KAIST New Culture Strategy, QAIST’ for a post-AI era.” He added that he would like to inspire students and faculty to have more humanistic approaches in their education and learning. The ‘Q’ in “QAIST” refers to questioning. President Lee believes that the learning starts with questions and being curious about something. “We will innovate the educational system to have them question everything.” Then, he said that he will focus on ‘A’dvanced research to prepare for the post AI-era. “We should be the first mover who can define and solve new problems. It’s more important to be the ‘first’ one than the ‘best’ one.” He also said he will create a new culture that failing would not be stigmatized, offering more chances after failing. ‘I’nternationalization is another vision the new president will continue to pursue. He plans to embrace greater diversity on the campus to achieve goals of 15% international faculty, 25% female faculty, and 15% international students by reshaping the recruiting policy. He will continue to expand KAIST campuses overseas. ‘S’tartup and technology commercialization will be the crucial areas where the president will make innovations. “I will fully support any startups at KAIST. I encourage every lab to start a startup,” he stressed. President Lee said he plans to increase KAIST’s annual revenue from technology commercialization fees to 100 billion KRW in 10 years, a step to secure financial independence. He plans to privatize the Institute of Technology Value Creation, which is responsible for technology commercialization at KAIST to enhance its competitiveness. ‘T’rust building is the prerequisite value for creating transparent and reliable management in finance and HR. President Lee said he would like to make a new organizational culture that will be more ethical, responsible, and autonomous with a high standard of integrity. His predecessor, President Sung-Chul Shin lauded his successor in his congratulatory speech saying, “He is a president prepared for this job.” “I have known him for more than 30 years. He is a man of action. With unparalleled ideas and prompt execution, he carried out all his duties efficiently for the Committee of Vision 2031 that he chaired, and played a central role in establishing the full vision of KAIST. First and foremost, he is a man of great passion, with a firm vision but a warm heart.” Nexon founder and Chairman Jung-Ju Kim also made an emotional tribute to his former professor. Holding back tears, he said, “I was not a good student. I was struggling in my graduate courses so I had to drop out of my PhD course. But Professor Lee and his wife never gave up on me. They were so kind to me and were always encouraging despite my disappointing days. I am now ready to do something good for KAIST, for Professor Lee, and for the future of our society. I believe that President Lee will guide us down the new path for KAIST.” IDIS Holdings CEO Young-Dal Kim also attended the ceremony to congratulate his former professor on his inauguration. (END)
2021.03.09
View 7736
ACS Nano Special Edition Highlights Innovations at KAIST
- The collective intelligence and technological innovation of KAIST was highlighted with case studies including the Post-COVID-19 New Deal R&D Initiative Project. - KAIST’s innovative academic achievements and R&D efforts for addressing the world’s greatest challenges such as the COVID-19 pandemic were featured in ACS Nano as part of its special virtual issue commemorating the 50th anniversary of KAIST. The issue consisted of 14 review articles contributed by KAIST faculty from five departments, including two from Professor Il-Doo Kim from the Department of Materials Science and Engineering, who serves as an associate editor of the ACS Nano. ACS Nano, the leading international journal in nanoscience and nanotechnology, published a special virtual issue last month, titled ‘Celebrating 50 Years of KAIST: Collective Intelligence and Innovation for Confronting Contemporary Issues.’ This special virtual issue introduced KAIST’s vision of becoming a ‘global value-creative leading university’ and its progress toward this vision over the last 50 years. The issue explained how KAIST has served as the main hub for advanced scientific research and technological innovation in South Korea since its establishment in 1971, and how its faculty and over 69,000 graduates played a key role in propelling the nation’s rapid industrialization and economic development. The issue also emphasized the need for KAIST to enhance global cooperation and the exchange of ideas in the years to come, especially during the post-COVID era intertwined with the Fourth Industrial Revolution (4IR). In this regard, the issue cited the first ‘KAIST Emerging Materials e-Symposium (EMS)’, which was held online for five days in September of last year with a global audience of over 10,000 participating live via Zoom and YouTube, as a successful example of what academic collaboration could look like in the post-COVID and 4IR eras. In addition, the “Science & Technology New Deal Project for COVID-19 Response,” a project conducted by KAIST with support from the Ministry of Science and ICT (MSIT) of South Korea, was also introduced as another excellent case of KAIST’s collective intelligence and technological innovation. The issue highlighted some key achievements from this project for overcoming the pandemic-driven crisis, such as: reusable anti-virus filters, negative-pressure ambulances for integrated patient transport and hospitalization, and movable and expandable negative-pressure ward modules. “We hold our expectations high for the outstanding achievements and progress KAIST will have made by its centennial,” said Professor Kim on the background of curating the 14 review articles contributed by KAIST faculty from the fields of Materials Science and Engineering (MSE), Chemical and Biomolecular Engineering (CBE), Nuclear and Quantum Engineering (NQE), Electrical Engineering (EE), and Chemistry (Chem). Review articles discussing emerging materials and their properties covered photonic carbon dots (Professor Chan Beum Park, MSE), single-atom and ensemble catalysts (Professor Hyunjoo Lee, CBE), and metal/metal oxide electrocatalysts (Professor Sung-Yoon Chung, MSE). Review articles discussing materials processing covered 2D layered materials synthesis based on interlayer engineering (Professor Kibum Kang, MSE), eco-friendly methods for solar cell production (Professor Bumjoon J. Kim, CBE), an ex-solution process for the synthesis of highly stable catalysts (Professor WooChul Jung, MSE), and 3D light-patterning synthesis of ordered nanostructures (Professor Seokwoo Jeon, MSE, and Professor Dongchan Jang, NQE). Review articles discussing advanced analysis techniques covered operando materials analyses (Professor Jeong Yeong Park, Chem), graphene liquid cell transmission electron microscopy (Professor Jong Min Yuk, MSE), and multiscale modeling and visualization of materials systems (Professor Seungbum Hong, MSE). Review articles discussing practical state-of-the-art devices covered chemiresistive hydrogen sensors (Professor Il-Doo Kim, MSE), patient-friendly diagnostics and implantable treatment devices (Professor Steve Park, MSE), triboelectric nanogenerators (Professor Yang-Kyu Choi, EE), and next-generation lithium-air batteries (Professor Hye Ryung Byon, Chem, and Professor Il-Doo Kim, MSE). In addition to Professor Il-Doo Kim, post-doctoral researcher Dr. Jaewan Ahn from the KAIST Applied Science Research Institute, Dean of the College of Engineering at KAIST Professor Choongsik Bae, and ACS Nano Editor-in-Chief Professor Paul S. Weiss from the University of California, Los Angeles also contributed to the publication of this ACS Nano special virtual issue. The issue can be viewed and downloaded from the ACS Nano website at https://doi.org/10.1021/acsnano.1c01101. Image credit: KAIST Image usage restrictions: News organizations may use or redistribute this image,with proper attribution, as part of news coverage of this paper only. Publication: Ahn, J., et al. (2021) Celebrating 50 Years of KAIST: Collective Intelligence and Innovation for Confronting Contemporary Issues. ACS Nano 15(3): 1895-1907. Available online at https://doi.org/10.1021/acsnano.1c01101 Profile: Il-Doo Kim, Ph.D Chair Professor idkim@kaist.ac.kr http://advnano.kaist.ac.kr Advanced Nanomaterials and Energy Lab. Department of Materials Science and Engineering Membrane Innovation Center for Anti-Virus and Air-Quality Control https://kaist.ac.kr/ Korea Advanced Institute of Science and Technology (KAIST) Daejeon, Republic of Korea (END)
2021.03.05
View 24784
Deep-Learning and 3D Holographic Microscopy Beats Scientists at Analyzing Cancer Immunotherapy
Live tracking and analyzing of the dynamics of chimeric antigen receptor (CAR) T-cells targeting cancer cells can open new avenues for the development of cancer immunotherapy. However, imaging via conventional microscopy approaches can result in cellular damage, and assessments of cell-to-cell interactions are extremely difficult and labor-intensive. When researchers applied deep learning and 3D holographic microscopy to the task, however, they not only avoided these difficultues but found that AI was better at it than humans were. Artificial intelligence (AI) is helping researchers decipher images from a new holographic microscopy technique needed to investigate a key process in cancer immunotherapy “live” as it takes place. The AI transformed work that, if performed manually by scientists, would otherwise be incredibly labor-intensive and time-consuming into one that is not only effortless but done better than they could have done it themselves. The research, conducted by the team of Professor YongKeun Park from the Department of Physics, appeared in the journal eLife last December. A critical stage in the development of the human immune system’s ability to respond not just generally to any invader (such as pathogens or cancer cells) but specifically to that particular type of invader and remember it should it attempt to invade again is the formation of a junction between an immune cell called a T-cell and a cell that presents the antigen, or part of the invader that is causing the problem, to it. This process is like when a picture of a suspect is sent to a police car so that the officers can recognize the criminal they are trying to track down. The junction between the two cells, called the immunological synapse, or IS, is the key process in teaching the immune system how to recognize a specific type of invader. Since the formation of the IS junction is such a critical step for the initiation of an antigen-specific immune response, various techniques allowing researchers to observe the process as it happens have been used to study its dynamics. Most of these live imaging techniques rely on fluorescence microscopy, where genetic tweaking causes part of a protein from a cell to fluoresce, in turn allowing the subject to be tracked via fluorescence rather than via the reflected light used in many conventional microscopy techniques. However, fluorescence-based imaging can suffer from effects such as photo-bleaching and photo-toxicity, preventing the assessment of dynamic changes in the IS junction process over the long term. Fluorescence-based imaging still involves illumination, whereupon the fluorophores (chemical compounds that cause the fluorescence) emit light of a different color. Photo-bleaching or photo-toxicity occur when the subject is exposed to too much illumination, resulting in chemical alteration or cellular damage. One recent option that does away with fluorescent labelling and thereby avoids such problems is 3D holographic microscopy or holotomography (HT). In this technique, the refractive index (the way that light changes direction when encountering a substance with a different density—why a straw looks like it bends in a glass of water) is recorded in 3D as a hologram. Until now, HT has been used to study single cells, but never cell-cell interactions involved in immune responses. One of the main reasons is the difficulty of “segmentation,” or distinguishing the different parts of a cell and thus distinguishing between the interacting cells; in other words, deciphering which part belongs to which cell. Manual segmentation, or marking out the different parts manually, is one option, but it is difficult and time-consuming, especially in three dimensions. To overcome this problem, automatic segmentation has been developed in which simple computer algorithms perform the identification. “But these basic algorithms often make mistakes,” explained Professor YongKeun Park, “particularly with respect to adjoining segmentation, which of course is exactly what is occurring here in the immune response we’re most interested in.” So, the researchers applied a deep learning framework to the HT segmentation problem. Deep learning is a type of machine learning in which artificial neural networks based on the human brain recognize patterns in a way that is similar to how humans do this. Regular machine learning requires data as an input that has already been labelled. The AI “learns” by understanding the labeled data and then recognizes the concept that has been labelled when it is fed novel data. For example, AI trained on a thousand images of cats labelled “cat” should be able to recognize a cat the next time it encounters an image with a cat in it. Deep learning involves multiple layers of artificial neural networks attacking much larger, but unlabeled datasets, in which the AI develops its own ‘labels’ for concepts it encounters. In essence, the deep learning framework that KAIST researchers developed, called DeepIS, came up with its own concepts by which it distinguishes the different parts of the IS junction process. To validate this method, the research team applied it to the dynamics of a particular IS junction formed between chimeric antigen receptor (CAR) T-cells and target cancer cells. They then compared the results to what they would normally have done: the laborious process of performing the segmentation manually. They found not only that DeepIS was able to define areas within the IS with high accuracy, but that the technique was even able to capture information about the total distribution of proteins within the IS that may not have been easily measured using conventional techniques. “In addition to allowing us to avoid the drudgery of manual segmentation and the problems of photo-bleaching and photo-toxicity, we found that the AI actually did a better job,” Professor Park added. The next step will be to combine the technique with methods of measuring how much physical force is applied by different parts of the IS junction, such as holographic optical tweezers or traction force microscopy. -Profile Professor YongKeun Park Department of Physics Biomedical Optics Laboratory http://bmol.kaist.ac.kr KAIST
2021.02.24
View 10140
Attachable Skin Monitors that Wick the Sweat Away
- A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. - A new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports last month. “Wearable bioelectronics are becoming more attractive for the day-to-day monitoring of biological compounds found in sweat, like hormones or glucose, as well as body temperature, heart rate, and energy expenditure,” Professor Cho explained. “But currently available materials can cause skin irritation, so scientists are looking for ways to improve them,” he added. Attachable biosensors often use a silicone-based compound called polydimethylsiloxane (PDMS), as it has a relatively high water vapour transmission rate compared to other materials. Still, this rate is only two-thirds that of skin’s water evaporation rate, meaning sweat still gets trapped underneath it. Current fabrication approaches mix PDMS with beads or solutes, such as sugars or salts, and then remove them to leave pores in their place. Another technique uses gas to form pores in the material. Each technique has its disadvantages, from being expensive and complex to leaving pores of different sizes. A team of researchers led by Professor Cho from the KAIST Department of Bio and Brain Engineering was able to form small, uniform pores by crystallizing citric acid in PDMS and then removing the crystals using ethanol. The approach is significantly cheaper than using beads, and leads to 93.2% smaller and 425% more uniformly-sized pores compared to using sugar. Importantly, the membrane transmits water vapour 2.2 times faster than human skin. The team tested their membrane on human skin for seven days and found that it caused only minor redness and no itching, whereas a non-porous PDMS membrane did. Professor Cho said, “Our method could be used to fabricate porous PDMS membranes for skin-attachable devices used for daily monitoring of physiological signals.” “We next plan to modify our membrane so it can be more readily attached to and removed from skin,” he added. This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) of Korea under the Alchemist Project. Image description: Smaller, more uniformly-sized pores are made in the PDMS membrane by mixing PDMS, toluene, citric acid, and ethanol. Toluene dilutes PDMS so it can easily mix with the other two constituents. Toluene and ethanol are then evaporated, which causes the citric acid to crystallize within the PDMS material. The mixture is placed in a mould where it solidifies into a thin film. The crystals are then removed using ethanol, leaving pores in their place. Image credit: Professor Young-Ho Cho, KAIST Image usage restrictions: News organizations may use or redistribute this image, with proper attribution, as part of news coverage of this paper only. Publication: Yoon, S, et al. (2021) Wearable porous PDMS layer of high moisture permeability for skin trouble reduction. Scientific Reports 11, Article No. 938. Available online at https://doi.org/10.1038/s41598-020-78580-z Profile: Young-Ho Cho, Ph.D Professor mems@kaist.ac.kr https://mems.kaist.ac.kr NanoSentuating Systems Laboratory Department of Bio and Brain Engineering https://kaist.ac.kr Korea Advanced Institute of Science and Technology (KAIST) Daejeon, Republic of Korea (END)
2021.02.22
View 10746
KAIST Celebrates 50-Year Anniversary with 2,712 New Graduates via 2021 Commencement Ceremony
KAIST is proud to announce the graduation of 2,712 students, including 668 PhDs and 1,331 master’s degree recipients. The pandemic could not stop the university from recognizing each graduate's remarkable and original achievements. A pandemic-proof blended commencement ceremony was held on Friday, February 19, and livestreamed to the graduates and their loved ones. KAIST decided to take extra precautions to protect graduates and other attendees’ health and well-being. For the virtual ceremony, only 83 out of the 2,712 graduates were invited to attend the ceremony in person. Graduates were divided into four groups to attend at four different places in Daejeon and Seoul campuses and watch the ceremony via Zoom. No family members or friends of the graduates were allowed to participate at the campus, but happily cheered the graduates via YouTube. This year’s valedictorian, Hyun-Young Park from the School of Electrical Engineering, received the Award of the Minister of Science and ICT. Salutorian Yeh-Lin Cho from the Department of Materials Science and Engineering received the Award of the KAIST Board of Trustees, while the recipient of the KAIST Presidential Award was Min-Jae Kim from the Department of Bio and Brain Engineering. The Award of the KAIST Development Foundation Chairman and the KAIST Alumni Association Presidential Award were conferred to Kyung-Tae Kim from the Department of Physics and Min-Woo Jung from the Department of Civil and Environmental Engineering, respectively. President Sung-Chul Shin, Chairman of the Board of Trustees Woo Sik Kim, and a very limited number of faculty members and administrative staff officiated the commencement ceremony from the KAIST Auditorium. President Shin applauded the graduates’ hard work and dedication in his commencement speech. He also delivered a very special congratulatory message to the bachelor’s degree awardees. “This year’s commencement is especially meaningful for me. I was appointed as the 16th president of KAIST on February 23, 2017, and met you for the first time on February 28 at the matriculation ceremony. We promised each other—as freshmen and as the first alumnus president—to do our best for the next four years,” President Shin recalled. He added, “I have done my best to keep my promise, and now my term will end on February 22. Of course, the past four years were even more precious because you were all a part of it.” In conclusion, President Shin said, “I am proud of you for keeping your end of the promise. Thank you for becoming who you are today. I have high hopes for the bright future that you will be shaping for KAIST and our society.” The livestream ceremony is archived for viewing on KAIST's Official YouTube Channel. (END)
2021.02.19
View 7353
Provost Kwang Hyung Lee Elected as the 17th President of KAIST
Provost and Executive Vice President Kwang Hyung Lee was selected as the 17th president of KAIST during a vote of the KAIST Board of Trustees on February 18. He will succeed President Sung-Chul Shin, whose four-year term concludes on February 22. President-elect Lee, 67, was among the three final candidates who were nominated by the Presidential Search Committee. Upon the selection, President-elect Lee said he will take up new challenges to transform KAIST into the most relevant research university in the world, fostering talents who can work with emerging technologies while pushing for innovative R&D initiatives that will benefit all of humanity. President-elect Lee is a futurologist who pioneered multidisciplinary studies and research at KAIST. He advocated that the convergence of information, biology, and nano-technologies would be critical for future industries, playing a crucial role in establishing the Department of Bio and Brain Engineering in 2001 and the Moon Soul Graduate School of Future Strategy in 2013. He then served as the inaugural head of both faculties. President-elect Lee has extensive administrative experience at KAIST, serving as Associate Vice President of the International Office, and Associate Vice President of Academic Affairs since early 2001. He is also serving as a member of the Korea Presidential Education Committee. An ardent champion of entrepreneurship and startups, he has advised the first generations of KAIST startup entrepreneurs such as Nexon, Idis, Neowiz, and Olaworks. President-elect Lee, drawn to creative thinking and flipped learning, is famous for watching TV upside down. Such pioneering ideas and his unusual thinking style were modeled in the ‘eccentric professor’ role featured on the TV hit drama of ‘KAIST’ from 1999 to 2000. An alumnus who earned his MS in industrial engineering at KAIST in 1980 after completing his undergraduate studies at Seoul National University, President-elect Lee joined the KAIST faculty in 1985 upon receiving his PhD in computer science from INSA de Lyon in France. A computer scientist as well as fuzzy theorist whose research area extends to AI, bioinformatics, fuzzy intelligent systems, and foresight methods, Professor Lee has published more than 70 papers in international journals and textbooks on system programming, fuzzy set theory and its applications, and three-dimensional creativity. He also invented a fuzzy elevator, subway operation controller, and AI transportation controller. A fellow at the Korea Academy of Science and Technology and the National Academy of Engineering of Korea, he was decorated by the Korean government and the French government in recognition of the innovative education and research initiatives he has pursued.
2021.02.18
View 8538
KAIST International Symposium Highlights the Value of Science through Global Collaboration
The presidents of three premier science and technology universities shared their belief that universities should move forward to embrace social changes while maintaining the importance of academics for future generations during the KAIST International Symposium on February 16. The symposium, one of the events to celebrate KAIST’s 50th anniversary, highlighted the future role of universities over the next 50 years by hosting a panel featuring ETH Zurich President Joël Mesot, Caltech President Thomas Rosenbaum, and KAIST President Sung-Chul Shin. Members of the foreign diplomatic corps representing seven countries also explored the new model of global collaboration in the second session. President Rosenbaum of Caltech said that even though society is changing, the role of universities will not be different since the value of knowledge will always be important. He said that universities must embrace change. He said that universities should move forward fearlessly if they believe it would impact wider society positively. He added that universities should also be courageous enough to take a new path based on longer-term perspectives and lessons learned from successes. One of the roles of universities is to establish various hypotheses and possible prospects, raise doubts, and go forward with a strong will for the future generations to come. He cited LIGO (the Laser Inerferometer Gravitational-wave Observatory), as a good example of a successful university-research collaboration. LIGO is funded by the National Science Foundation in the US and operated by Caltech and MIT. Approximately 1300 scientists from around the world, including the Max Planck Society in Germany and the Science and Technology Facilities Council in the UK, participate in the LIGO Scientific Collaboration. In 2019, the international team of scientists detected the collision of two black holes with masses about 142 times the mass of the sun in the most massive collision ever detected. MIT Physicist Rainer Weiss shared the Nobel Prize in Physics with Professor Barry Barish and Professor Kip Thorn from the Department of Physics at Caltech in recognition of their contribution to the LIGO detector and the observation of gravitational waves. President Mesot of ETH Zurich stressed that universities should foster young talents well versed with creative thinking and entrepreneurship in this new era. He also said that COVID-19 has reaffirmed the importance of science and global collaborations beyond borders to address global challenges such as pandemics. President Mesot said COVID-19 has taught us the value of science and R&D, adding that the roll-out of a vaccine in only one year would have been impossible without the decades-long R&D foundation that universities and industries have established. He also gave the example of the MRI as a reason universities should provide strong basic science research foundation. In 1944 in the US, Dr. Isidor Isaac Rabi won the Nobel Prize in Physics for his discovery of nuclear magnetic resonance. The MRI research inspired many ETH professors for further studies and led them to win the Nobel Prize in Physics in 1952 for their MRI basic theory and in 1991 the Nobel Prize in Chemistry with the development of high-resolution spectroscopy. “The MRI first started 80 years ago and still applies in today’s medicine. We should focus on research which will keep such value,” President Mesot said. Meanwhile President Shin also said that the age of the Fourth Industrial Revolution has been deemed the "winner takes all" era. At this highly competitive time, R&D activities are more meaningful if they produce the world’s best, first, and only outcomes. “We aim to achieve excellence in research with long-term innovative research support systems. We will conduct R&D activities that will lead the megatrends of the Fourth Industrial Revolution: hyper-connectivity, super-intelligence, and meta-convergence. In addition, we will double down to conduct forward-looking flagship research that will enhance the happiness and prosperity of all humanity in the areas of global warming, infectious diseases, bio-medicine, energy and environment, smart technology, and post-AI.” Responding to one of the student’s question about what mindsets are expected of students enrolled in government-funded national universities, President Mesot made three suggestions. First, they should remember that they are privileged, so they should give back their talents to society. They should also be patient with what they are doing even when they don’t achieve the desired results. Lastly, they should remain open to new ideas and be flexible when encountering disruptions. Seven diplomats stationing in Korea including Rob Rapson, US Charge d’Affairs ad Interim Rob Rapson, UAE Ambassador Abdulla Saif Al Nuaimi, Kenyan Ambassador Mwende Mwinzi, Danish Ambassador Einar Jensen, Pakistani Ambassador Mumtaz Zahar Baloch, Egyptian Ambassador Haem Fahmy, and UK Ambassador Simon Smith joined the second session themed KAIST for the Global Community. They all agreed that KAIST is one of the shining examples of successful international collaboration stemming from the international aid loan from USAID. Five decades later, KAIST now is working to help the Kenyan government to establish Kenya KAIST with a 95-million US funding from the Korea Exim Bank. While stressing the importance of global collaboration for inclusive growth in the global community, the seven diplomats gave their insights on the newly transforming global environment intertwined with COVID-19 and the Fourth Industrial Revolution. In the face of global changes caused by emerging technologies and carbon neutrality, the ambassadors expressed a strong desire to make collaborations between KAIST and their countries to propel new innovations in industry and education in their countries.
2021.02.17
View 7638
Ushering in a New Era at the 50th Innoversary Ceremony
President Moon Jae-In declares KAIST the future of Korea KAIST reaffirmed its goal of becoming an institute that can serve the world for the next century, marking its 50th anniversary on February 16. The KAIST community and distinguished guests gathered online during the official ceremony to commemorate KAIST’s anniversary and envisioned ways to serve the world, a major shift from its founding mission focusing on national growth. The ceremony celebrated the legacy of KAIST, which has become a trailblazer by fostering the most competent scientists and engineers and making breakthroughs which led to the nation becoming a global high-tech leader. President Moon Jae-In applauded KAIST as “the future of Korea” in his online congratulatory message, saying that “KAIST has made us feel proud when the nation stays ahead in science and technology. The dream of KAIST has been the dream of Korea. The passion of KAIST has been the passion of Korea. KAIST is the future of Korea.” “KAIST has overcome challenges and created innovations for advancing the nation, from the first internet network to launching our first satellite in the early 80s to the Mobile Clinic Module (MCM), a negative pressure ward module in response to COVID-19. Whenever the nation faced a challenge, KAIST was there.” President Moon also asked KAIST researchers to find sustainable ways to balance nature and humanity in this time of climate change and the Fourth Industrial Revolution. Executive Chairman of the World Economic Forum Dr.Klaus Schwab also congratulated, saying "KAIST is a leader in ensuring social inclusion. Founded with the support of USAID, today it is paying it forward and sharing the same support through the Kenya-KAIST project." The ceremony first brought Dr. KunMo Chung to the stage, the man who proposed the idea of founding the first advanced science and technology institute in Korea. His proposal to the then administrator of USAID John Hannah resulted in the Korean government meriting a 6 million USD loan for to start KAIST. He was the only Korean member of the USAID feasibility study team led by Dr. Frederick Terman, the former vice president of Stanford University. Dr. Chung wrote the Terman Report, which gave a green light to the establishment of KAIST in Korea in 1970. Dr. Chung said the nation’s strong desire to escape from poverty through the advancement of science and technology was thoroughly realized by KAIST. “The Terman Report’s vision was perfectly realized. Now it’s time to envision the next dream of KAIST for another century.” President Sung-Chul Shin said in his anniversary speech that KAIST has now transformed into a university that will serve the all of humanity by advancing science and technology while fostering new talents best fit for the new global environment. President Shin said that to fulfill KAIST’s second dream, the university will drive innovation in the five major areas of education, research, technology commercialization, globalization, and future strategy, under the C3 spirit of a Challenging spirit, Creativity, and Caring minds. “In the next 50 years, KAIST hopes to fulfill the 10-10-10 Dream, that is, to have 10 Singularity Professors who have produced world-class achievements, 10 Decacorn startups valued at 10 trillion won, and global campuses in 10 countries.” Then, four young KAIST professors who are conducting research in the flagship fields of mobility, new materials, post-AI, and bio-medicine presented their research vision and gave speeches. Professor Hae-Won Park from the Department of Mechanical Engineering and Professor Jihyeon Yeom from the Department of Materials Science and Engineering said the advent of new mobility combined with robotics and new nano-materials scaled down into spintronics, ‘KAISTronic materials’, will provide new momentum for the industry and the wellbeing of humanity. Professor Kijung Shin from the Graduate School of AI spoke on the new future transformed by quantum computers. Professor Young Seok Ju from the Graduate School of Medical Science and Engineering predicted a future in which cancer will no longer be a terminal disease and digital cells and the digitization of bio-medicine will significantly improve our quality of life. He said the combination of anti-aging and reverse aging studies will make a difference in our lives. After the official ceremony, KAIST’s administrative leadership including President Shin and Dr. Kun-Mo Chung attended a ceremony to dedicate the sky lounge at the Academic Cultural Complex as the John Hannah Hall. Terman Hall, located in the Creative Learning Building, was dedicated in 2004 in honor of Dr. Frederick Terman.
2021.02.17
View 10902
Distinguished Alumni Awardees 2020
The KAIST Alumni Association (KAA) announced the four recipients of the Distinguished Alumni Awards for the year 2020. The Distinguished Alumni Awards recognize graduates who have achieved outstanding accomplishments in their professional and personal lives, and who have been an inspiration to fellow alumni and students in Korea and around the globe. The four distinguished alumni of the year 2020 are listed below. President Dong-Won Kim (Department of Industrial and Systems Engineering, M.S., Class of ’82) of Jeonbuk National University is making significant contributions to the advancement of local industrial technology and the cultivation of professional personnel through outstanding research outcomes. As an educational administrator, his leadership is helping to realize long-desired projects at the university, through which he is strengthening the competitiveness of the university and the local community. Tae-Kyung Yoo (School of Electrical Engineering, M.S. and Ph.D., Class of ’83 and ’85 respectively), CEO and Chairman of Lumens, is a first-generation entrepreneur in the light emitting diode (LED) industry in Korea. He runs Lumens, a globally renowned company specializing in and leading the technological innovation of LEDs. He thereby contributes to strengthening national competitiveness and the advancement of science and technology. President Nak Kyu Lee (Department of Mechanical Engineering, M.S. and Ph.D., Class of ’85 and ’87 respectively) of the Korea Institute of Industrial Technology (KITECH) has shown excellent results in his research in which he developed core production technologies to lead the nation’s industries. He also focused on supporting on-site technologies involved in field work to apply what he developed into real production processes, and contributed greatly to improving the competitiveness of nationwide manufacturing. Hyeon-Mo Ku (School of Business and Technology Management, M.S. and Ph.D., Class of ’85 and ’93 respectively), CEO of KT Corporation, helped the nation’s leading communications company roll out the first 5G network in the world. He also strengthened national competitiveness in AI technology through ‘AI One Team,’ an industry-academic corporation project, and took the lead in developing the home-grown cloud industry. His involvement in the innovation of Korea’s ICT technology was highly recognized. Since the establishment of the award in 1992, a total of 107 alumni at home and abroad have brought distinction to the university and been honored as recipients. These recipients are playing major roles in society, and some of the notable former awardees include: KAIST President Sung-Chul Shin (2010), Samsung Electronics Vice Chairman Ki-Nam Kim (2012), Nexon Chairman Jung-Ju Kim (2007), and Krafton Chairman Byeong-Gyu Chang (2006). The President of the KAA and Advisor of Samsung Electronics, Chilhee Chung, said, “The Distinguished Alumni Awards are an honor given to alumni who have contributed to the development of the nation and society, and raised the name of their alma mater.” He added, “We can see the proud position of KAIST in the global arena just by looking at the accomplishments of our awardees.” (END)
2021.02.04
View 6912
COVID-Update: Spring 2021 Classes Continue Online
KAIST announced that its spring 2021 classes will also be online as the pandemic continues into the new year. The spring semester will begin on March 1. Executive Vice President and Provost Kwang Hyung Lee said in a letter to the KAIST community on January 15 that nearly all classes in the 2021 spring semester will be held online. However, a very limited number of lab classes and other classes that require on-site practice and demonstrations will be offered either in-person or in a blended format. In addition, graduate courses above the 600 level and graduate courses in the College of Business at the Seoul campus will be allowed to conduct in-person or blended classes under very strict social distancing guidelines. Provost Lee said that the university will be revert back to in-person classes as soon as the government eases the social distancing guidelines. As of February 4, the nation is under Level 2.5 in Seoul and its metropolitan areas, while other regions are at Level 2. Level 2.5 prohibits the gathering of 10 or more people, and Levels 1 and 2 require gatherings to be fewer than 50 people. At Level 3, all classes will be held online. Test management is another challenge. Regarding mid-term and final exams, the university plans to give more flexibility to professors. Professors may give additional assignments instead of a mid-term exam. Open-book exams and real-time exams through Zoom will be another option. However, some classes that require in-person tests in some graduate courses will be allowed as long as they follow very strict social distancing guidelines.
2021.02.04
View 4517
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 176