본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Campus/People
by recently order
by view order
Education Innovation Day Reaffirms Rewarding of Excellence
Professors Tae-Eog Lee and Il-Chul Moon from the Department of Industrial & Systems Engineering received the Linkgenesis Best Teacher Award and the Soo-Young Lee Teaching Innovation Award on May 10. They were each awarded with 10 million KRW in prize money during the Education Innovation Day ceremony held at the Chung Kun-mo conference hall. The award was endowed by KAIST Alumni Scholarship Chairman Hyung-Kyu Lim and KAIST Foundation Chairman Soo-Young Lee to support the innovation initiative and acknowledge faculty members who made significant contributions to educational innovation and benefited the general public though their innovations. “KAIST’s vision for excellence and commitment to innovation is a game changer. Educational innovation is one of five pillars of Vision 2031, and it is our priority to foster critical and creative thinking students,” said President Sung-Chul Shin at the ceremony. All the awardees made presentation on their innovative projects and shared their ideas on better pedagogical methodology for next generation. Professor Lee, dean of the KAIST Academy and the head of the Center for Excellence in Learning & Teaching was recognized for his contribution to enhancing educational quality through innovative learning and teaching methodology development. He has set up an Education 3.0 Initiative, an online education platform for flipped learning at KAIST. Professor Moon also upgraded the online education platform to the 4.0 version and extended KAIST’s massive online courses through KOOC framework. This open platform offers more than 62 courses, with more than 170 thousand users registered since 2014. Professor Song-Hong Park from the Department of Bio and Brain Engineering and Professor Jae-Woo Lee from the Department of Chemical and Biomolecular Engineering also won the Excellence Award.
2019.05.10
View 6967
Research Day Highlights Most Outstanding Research Achievements
Professor Byung Jin Cho from the School of Electrical Engineering was selected as the Grand Research Prize Winner in recognition of his innovative research achievement in the fields of nano electric and flexible energy devices during the 2019 KAIST Research Day ceremony held on April 23 at the Chung Kunmo Conference Hall. The ten most outstanding research achievements from the past year were also awarded in the three areas of Research, Innovation, Convergence Researches. Professor Cho is an internationally recognized researcher in the field of future nano and energy device technology. Professor Cho’s team has continued to research on advanced CMOS (complementary metal-oxide semiconductors). CMOS has become his key research topic over the past three decades. In 2014, he developed a glass fabric-based thermoelectric generator, which is extremely light and flexible and produces electricity from the heat of the human body. It is so flexible that the allowable bending radius of the generator is as low as 20 mm. There are no changes in performance even if the generator bends upward and downward for up to 120 cycles. His wearable thermoelectric generator was selected as one of the top ten most promising digital technologies by the Netexplo Forum in 2015. He now is working on high-performance and ultra-flexible CMOS IC for biomedical applications, expanding his scope to thermal haptic technology in VR using graphene-CMOS hybrid integrated circuits; to self-powered wireless sensor nodes and self-powered ECG system using wearable thermoelectric generators . In his special lecture at the ceremony, Professor Cho stressed the importance of collaboration in making scientific research and presented how he moved to future devices after focusing on scaling the devices. “When I started the research on semiconductors, I focused on how to scale the device down as much as possible. For decades, we have conducted a number of procedures to produce tiny but efficient materials. Now we have shifted to develop flexible thermoelements and wearable devices,” said Professor Cho. “We all thought the scaling down is the only way to create value-added technological breakthroughs. Now, the devices have been scaled down to 7nm and will go down to 5 nm soon. Over the past few years, I think we have gone through all the possible technological breakthroughs for reducing the size to 5nm. The semiconductor devices are made of more 1 billion transistors and go through 1,000 technological processes. So, there won’t be any possible way for a single genius to make a huge breakthrough. Without collaboration with others, it is nearly impossible to make any new technological breakthroughs.” Professor Cho has published more than 240 papers in renowned academic journals and presented more than 300 papers at academic conferences. He has also registered approximately 50 patents in the field of semiconductor device technology. The top ten research highlights of 2018 as follows: - Rydberg-Atom Quantum Simulator Development by Professor Jaewook Ahn and Heung-Sun Sim from the Department of Physics - From C-H to C-C Bonds at Room Temperature by Professor Mu-Hyun Baik from the Department of Chemistry - The Role of Rodlike Counterions on the Interactions of DNAs by Professor Yong Woon Kim of the Graduate School of Nanoscience and Technology - The Medal Preoptic Area Induces Hunting-Like Behaviors to Target Objects and Prey by Professor Daesoo Kim from the Department of Biological Sciences - Identification of the Origin of Brain Tumors and New Therapeutic Strategy by Professor Jeong Ho Lee from the Graduate School of Medical Science and Engineering - The Linear Frequency Conversion of Light at a Spatiotemporal Boundary by Professor Bumki Min from the Department of Mechanical Engineering - An Industrial Grade Flexible Transparent Force Touch Sensor by Professor Jun-Bo Yoon from the School of Electrical Engineering - The Detection and Clustering of Mixed-Type Defect Patterns in Wafer Bin Maps by Professor Heeyoung Kim from the Department of Industrial and Systems Engineering - The Development of a Reconfigurable Spin-Based Logic Device by Professor Byong-Guk Park from the Department of Materials Science and Engineering - The Development of a Miniaturized X-Ray Tube Based on Carbon Nanotube and Electronic Brachytherapy Device by Professor Sung Oh Cho from the Department of Nuclear and Quantum Engineering Professor YongKeun Park from the Department of Physics and Professor In-Chel Park from the School of Electrical Engineering received the Research Award. For the Innovation Award, Professor Munchurl Kim from the School of Electrical Engineering was the recipient and the Convergence Research Awards was conferred to Professor Sung-Yool Choi from the School of Electrical Engineering, Professor Sung Gap Im from the Department of Chemical and Biomolecular Engineering, and Professor SangHee Park from the Department of Materials Science and Engineering during the ceremony. For more on KAIST’s Top Research Achievements and Highlight of 2018, please refer to the attached below. click.
2019.04.25
View 13381
Professor Ji-Hyun Lee Awarded the Sasada Prize
Professor Ji-Hyun Lee from the Graduate School of Culture Technology was awarded the Sasada Prize during the 24th annual Conference of Computer-Aided Architectural Design Research in Asia (CAADRIA) held in Wellington, New Zealand on April 15. The Sasada Award honors the late Professor Tsuyoshi Sasada (1941-2005), the former Professor of Osaka University and co-founder and fellow of CAADRIA. It is given to an individual who has contributed to the next generation of researchers and academics, to the wider profession and practice in computer-aided design and research, and has earned recognition in the academic community. Professor Lee was recognized for her development of CAAD (Computer-Aided Architectural Design) through her research work on the land price precision system using case-based reasoning. Her research team proposed a model for estimating the average apartment price in an administrative district after collecting 40 variables from the six major Korean cities, excluding Seoul and Ulsan. Their follow-up studies showed the possibility of replacing existing experts’ predictions. Professor Lee has been steadily researching for 20 years on case-based reasoning (CBR), a field of artificial intelligence, and has published more than 40 papers in the field of CBR. Meanwhile, the CAAD Future 2019 event will be held at KAIST in June.
2019.04.23
View 5291
'In KAIST, Administration Should Be Done Scientifically Too'
A university community is comprised of three actors; student, faculty, and staff members. Among them, in many cases, the staff remain the hidden group, always working behind the spotlight. However, the final pieces of the puzzle always go through the hands of staff members who facilitate students’ and faculty members’ studies and research. The Office of Administration recently published two books: “In KAIST, Administration Should Be Done Scientifically Too,” and “A Life of Staff Called K.” The books describe ways to propel administrative innovation and organizational changes, seeking to increase the value of staff members’ working scope and their professionalism. These are the result of the 43-member Administration Advancement Committee’s year-long research to improve institutional efficiency. The 43 staff members voluntarily participated in the publication. The books cite “the independent and self-motivating administration" as an ideal environment to make professional staff members. And the institution is responsible for creating such an inspiring environment through innovation. “This will highlight the guiding role of our 550 staff members, who are at the frontline serving students and faculty. Based on the analysis of these valuable books, we will provide various educational systems and revise current HR system to enhance our staff’s career performance,” says Ki-Han Kim, Associate Vice President of Administration. According to “In KAIST, Administration Should Be Done Scientifically Too,” 48% of students and faculty expressed negativity regarding the staff members’ performance in the administration offices. Meanwhile about 50% of them expressed satisfaction for the services provided by their department offices. The book analyzed which side current administration system should address more. The book reports that 55% of staff members also cited professionalism as a priority for their career building. However, 65% of them confessed that they rarely have strong sense of ownership, which leads to passive working performance. Despite such passive attitude, 84% of them showed strong fellowship with their colleagues, a promising signal to the future administrative services and systems. These books identify four prescriptions for advancing administration services: improving the HR system, building professionalism, establishing smart working systems, and creating an efficient organizational culture.
2019.04.23
View 2440
Next-Generation Small Satellite Starts Operations
Korea’s next generation small satellite developed by KAIST started its space observation missions after completing its performance checkup, the Ministry of Science and ICT announced on April 16. The Ministry said that the Next Sat-1, launched on Dec. 4, has successfully deployed its solar panels, adjusted its posture and carried out internal checks to see if all system were functioning normally. The Next Sat-1, expected to be operation for some two years, is the first locally made satellite to have instruments for the Study of Space Storms (ISSS) that can check the impact of solar storms on the magnetic field of the pole areas. It can be further used to detect changes to the Earth's ionosphere in low longitude regions. The ministry said the satellite's near-infrared imaging spectrometer (NISS) camera will be used to peer into space with one of tasks to determine the brightness of the M95 barred spiral galaxy in the constellation Leo. KAIST built the large capacity memory and communication equipment with others, like Asia Pacific Satellite Inc., building star tracking sensors, computers and high speed data processors specifically designed for space. The satellite weighs 100 kg and is in orbit 575 km from the surface of the Earth. “Everything has been checked to be in working order with initial tests utilizing its sensors and camera revealing positive results,” the Ministry said in a statement. (Yonhap News) (The photos shows details of the Next Sat-1 satellite.)
2019.04.16
View 2284
Chair Professor Seong Honored with Don Miller Award
(Professor Poong-Hyun Seong) Chair Professor Poong-Hyun Seong from the Department of Nuclear & Quantum Engineering was selected as the recipient of the Don Miller Award by the American Nuclear Society. The award, established in 2009 by the American Nuclear Society in honor of former ANS President Don Miller, is given to an individual or team who has made a significant contribution to the advancement of one or both of the fields of nuclear instrumentation and control of human-machine interfaces through individual or combined activities. The award ceremony will be held on June 10 during the 2019 annual meeting of the ANS in Minneapolis in the US. Professor Seong is being recognized for his pioneering research and training in the fields of nuclear instrumentation control and human factor engineering at Korea. His research significantly contributed to safety improvements in nuclear power plants and have been recognized worldwide. Professor Seong, a fellow of the ANS, now serves as the first vice chair of the International Nuclear Societies Council and will take up the role of chair in 2021. Professor Seong said that, “ Korea is one of the most outstanding countries working on research in the fields of nuclear instrumentation control and human factors. KAIST PhDs are teaching at many universities at home and abroad. I look forward this award bringing new hope to our nuclear research and the domestic nuclear industry, which is now in difficult times.”
2019.04.11
View 4145
KAIST-THE Innovation & Impact Summit Touts New Roles of Higher Education
Global leaders from 115 institutions across 35 countries reaffirmed that the roles of universities are evolving to become much broader and more diverse, and redefined the impact of higher education last week at KAIST. During the THE Innovation and Impact Summit hosted by KAIST in partnership with the Times Higher Education, global leaders in higher education, industry, and government all agreed that universities should respond better in order to have a lasting and sustainable impact on society. In an effort to encourage social responsibility and boost the impact of universities, the THE first launched the University Impact Rankings based on the Sustainable Developed Goals declared during the 2015 UN summit. The THE’s University Impact Rankings are the first global attempt to evaluate universities’ impact on society, rather than only focusing on research and teaching performance. The new metrics include universities’ policies and outcomes based on 11 of the 17 UN SDGs. More than 500 institutions from 75 countries submitted data for the new rankings. The top three scores from ten of the SDGs were combined with SDG 17 to calculate the final score. The University of Auckland placed first in this new ranking while KAIST ranked fourth in the category of SDG 9 on Industry, Innovation, and Infrastructure. President Shin said, “KAIST has dedicated itself to producing knowledge that could serve as a growth engine for national development over the past half century. Now, taking on the UN’s 17 SDGs as new indicators, we will do our utmost to become a leading university in creating global value and better serving the world.” (Phil Baty, chief knowledge officer of THE) Phil Baty, chief knowledge officer at THE said, “I would like to applaud KAIST for being a pioneer, taking a new way of looking at university excellence. KAIST’s performance was strong overall, but especially outstanding in SDG 9. Its data proves that the university is fully engaged in knowledge creation and entrepreneur activities.” Keynote speakers all shared their views on disruptive knowledge and how to adjust to the new AI technology-driven, socio-economic culture. (from left: Lino Guzzella, former ETH Zurich President and Sung-Chul Shin, KAIST President) Lino Guzzella, former ETH Zurich President, argued in his keynote speech that there has been amazing growth in university enrollments, coupled with a substantial mismatch between what universities teach and what society needs. He went on to say that universities should look beyond the classical university model and find a way to train the next generation in a way that ensures society has a role for them. “The likelihood of each generation having a higher income at the age of 30 than their parents has diminished dramatically,” he said. He provided data that showed that middle-income professions have been declining, and between 2000 and 2010 the number of very high-skilled jobs and very low-skilled jobs doubled, whereas the number of those in the middle increased far more slowly. He expected that this trend will continue, saying that universities should focus on instilling critical thinking, interdisciplinary studies, and ‘productive failure’ to students in the new era. He also shared the secret recipe for the reduced youth unemployment statistics in Switzerland. He said that the education system in Switzerland was designed so that only 20 percent of an age cohort undertakes a classical university education, while 80 percent do vocational training run by companies. They learn what is really needed by industry and society from the early stages of their careers, so no mismatch exists. (Young Suk Chi, chairman of Elsevier) Meanwhile, Young Suk Chi, chairman of Elsevier, claimed in his keynote speech that universities should stop evaluating researchers only on their publication and citation counts. He said that doing so was driving academics to turn out multiple papers based on a single study in a practice called ‘salami publishing.’ Chi said, “It’s a responsibility we bear together, and we certainly, as industry associates, have to work hard to educate the world that publishing isn’t everything, but the impact is. But the impact is not just citations, either.” Chi said that there is a global ‘tech-lash’ that has arisen due to falling trust in major IT companies. On the other hand, universities are trustworthy. People perceive that universities are not merely seeking profits, and they can take advantage of it for fostering next generation researchers and CEOs, which can stand for ‘Chief Ethics Officers’. “Universities are collaborative,” said Chi. Universities’ research will flourish with more collaboration at a global scale. Collaborative research shows higher citation and impact rates. Instead of competing against one another, universities and industries should collaborate for advancing research. He argued further saying, “If they can uphold this reputation, universities, not companies, will be the institutions that people trust to influence and educate the next generation. Universities, in contrast to industry, have long-term vision, can facilitate collaborative research, and are trustworthy.” (President Joseph Aoun, Northeastern University) In the last day’s keynote speech, President Joseph Aoun of Northeastern University said that higher education risks becoming obsolete if it does not fully embrace lifelong learning. He also talked about preparing learners to succeed in the AI age. He said that lifelong learners made up 74 percent of learners in the US, and only 34 percent of universities in the country fill their seats, but higher education has not yet incorporated lifelong learning as part of its core mission. He said that lifelong learning is going to require that we listen to the needs of society, of both individuals and organizations. He also called for institutions to create curricula based on what he termed ‘humanics’ – the integration of technological literacy, data literacy, and human literacy, and said that this should be combined with experiential learning. (from left: So Young Kim, Guohua Chen, Aqil Jamal, Mooyoung Jung and Max Lu) (from left: Hubo and Duncan Ross, chief data officer of THE)
2019.04.09
View 4570
KAIST-KU Joint Research Center for Smart Healthcare & Transportation
(President Shin shakes hands with KU acting Presidedent Arif Al Hammdi at the KAIST-KU Joint Research Center opening ceremony on April 8.) KAIST opened the KAIST-Khalifa University Joint Research Center with Khalifa University on April 8. The opening ceremony was held at Khalifa University and was attended by President Sung-Chul Shin and Khalifa University Acting President Arif Al Hammadi. The new research center reflects the evolution of the long-established partnership between the two institutions. The two universities have already made very close collaborations in research and education in the fields of nuclear and quantum engineering. The launch of this center expanded their fields of collaboration to smart healthcare and smart transportation, key emerging sectors in the Fourth Industrial Revolution. President Shin signed an MOU with the UAE Minister of State for Advanced Science Sarah Amiri and Khalifa University to expand mutual collaboration in technology development and fostering human capital last year. The center will conduct research and education on autonomous vehicles, infrastructure for autonomous vehicle operation, wireless charging for electric vehicles, and infrastructure for electric autonomous vehicles. As for smart healthcare, the center will focus on healthcare robotics as well as sensors and wearable devices for personal healthcare services. President Shin, who accompanied a research team from the Graduate School of Green Transportation, said, “We are very delighted to enter into this expanded collaboration with KU. This partnership justifies our long-standing collaboration in the areas of emerging technologies in the Fourth Industrial Revolution while fostering human capital.” KU Acting President Arif Al Hammadi added, “The outcome of these research projects will establish the status of both institutions as champions of the Fourth Industrial Revolution, bringing benefits to our communities. We believe the new research center will further consolidate our status as a globally active, research-intensive academic institution, developing international collaborations that benefit the community in general.”
2019.04.09
View 6663
Distinguished Professor Sang Yup Lee Honored with the 23rd NAEK Award
(Distinguished Professor Sang Yup Lee from the Department of Chemical and Biomolecular Engineering) Distinguished Professor Sang Yup Lee from the Department of Chemical and Biomolecular Engineering was honored to be the laureate of the 23rd NAEK Award. The NAEK (National Academy of Engineering of Korea) Award was instituted in 1997 to honor and recognize engineers who have made significant contributions to the development of the engineering and technology field at universities, industries, and institutions. Every year, it is conferred to only one person who has achieved original and world-leading research that has led to national development. Distinguished Professor Lee is a pioneering scholar of the field of systems metabolic engineering and he was recognized for his significant achievements in the biochemical industry by developing novel microbial bioprocesses. In particular, he is globally renowned for biological plastic synthesis, making or decomposing polymers with microorganisms instead of using fossil resources. He has produced numerous high-quality research breakthroughs in metabolic and systems engineering. In 2016, he produced an easily degradable plastic with Escherichia coli (E. coli). In 2018, he successfully produced aromatic polyesters, the main material for PET (poly ethylene terephthalate) from E. coli strains. He also identified microorganism structures for PET degradation and improved its degradability with a novel variant. His research was ranked number one in the research and development division of Top Ten Science and Technology News 2018 announced by Korean Federation of Science & Technology Societies. He is one of highly cited researchers (HCR) ranked in the top 1% by citations for their field by the Clarivate Analytics.
2019.03.21
View 6760
The Future Mobility of the Year 2019
KAIST announced the Future Mobility of the Year (FMOTY) 2019. The winners are Volvo 360C, Toyota e-Palette, and Toyota Concept-i WALK. FMOTY are the first awards that recognizes concept cars that exhibit innovative services and practical transportation technology in three categories: private mobility, public and commercial mobility, and personal mobility. Figure 1. The winner in the private mobility division, the Volvo 360C In the private mobility division, the award went to the Volvo 360C. With targeted routes of roughly 186 miles, this vehicle has an ambitious service goal to replace airplanes by traveling these routes with great comfort. Goro Okazaki, a journalist with Car and Driver Japan, said, “The Volvo 360C clearly shows how highly personalized autonomous driving can change the future.” Figure 2. The winner in the public mobility division, the Toyota e-Palette The Toyota e-Palette was the winning car in commercial mobility division. This vehicle provides the best solution as a mobile service platform by transforming itself into mobile hospitals, hotels, stores and food trucks. Carlo Calderón, a journalist for Autopista Spain, said, “It has a great strength in remodeling its indoor and outdoor spaces according to various commercial uses.” Figure 3. The winner in the personal mobility division, the Toyota Concept-i WALK In the personal mobility division, the award went to the Toyota Concept-i WALK. It was recognized for having an exquisite user environment and artificial intelligent agent, along with an excellent completion. Jun Miao, a journalist with MJ CarShow China, said, “It is aesthetically pleasing. Beyond the upright control of conventional personal mobility, it allows agile control with a joystick.” FMOTY conducted a screening process for 45 concept cars over three months and 16 renowned automotive experts from 11 countries participated as judges for this award, including Editor in Chief of BBC Top Gear Magazine Charlie Turner and European Bureau Chief of Automobile Magazine Georg Kacher. The judges said that FMOTY was born to propose a new aspect of future mobility, and in terms of evaluating technical and social values of concept cars, FMOTY carries great significance. Kyung-soo Kim, Dean of the Cho Chun Shik Graduate School of Green Transportation said, “Globally renowned experts in the automotive field participated as judges to elevate the prestige and fairness of the awards. KAIST members were excluded from the entire judging process. I believe that the FMOTY Awards will expand public attention from the present to the future.” Details can be found on the official website of FMOTY ( www.fmoty.org ).
2019.03.11
View 5509
Brain-inspired Artificial Intelligence in Robots
(from left: PhD candidate Su Jin An, Dr. Jee Hang Lee and Professor Sang Wan Lee) Research groups in KAIST, the University of Cambridge, Japan’s National Institute for Information and Communications Technology, and Google DeepMind argue that our understanding of how humans make intelligent decisions has now reached a critical point in which robot intelligence can be significantly enhanced by mimicking strategies that the human brain uses when we make decisions in our everyday lives. In our rapidly changing world, both humans and autonomous robots constantly need to learn and adapt to new environments. But the difference is that humans are capable of making decisions according to the unique situations, whereas robots still rely on predetermined data to make decisions. Despite the rapid progress being made in strengthening the physical capability of robots, their central control systems, which govern how robots decide what to do at any one time, are still inferior to those of humans. In particular, they often rely on pre-programmed instructions to direct their behavior, and lack the hallmark of human behavior, that is, the flexibility and capacity to quickly learn and adapt. Applying neuroscience in robotics, Professor Sang Wan Lee from the Department of Bio and Brain Engineering, KAIST and Professor Ben Seymour from the University of Cambridge and Japan’s National Institute for Information and Communications Technology proposed a case in which robots should be designed based on the principles of the human brain. They argue that robot intelligence can be significantly enhanced by mimicking strategies that the human brain uses during decision-making processes in everyday life. The problem with importing human-like intelligence into robots has always been a difficult task without knowing the computational principles for how the human brain makes decisions –in other words, how to translate brain activity into computer code for the robots’ ‘brains’. However, researchers now argue that, following a series of recent discoveries in the field of computational neuroscience, there is enough of this code to effectively write it into robots. One of the examples discovered is the human brain’s ‘meta-controller’, a mechanism by which the brain decides how to switch between different subsystems to carry out complex tasks. Another example is the human pain system, which allows them to protect themselves in potentially hazardous environments. “Copying the brain’s code for these could greatly enhance the flexibility, efficiency, and safety of robots,” Professor Lee said. The team argued that this inter-disciplinary approach will provide just as many benefits to neuroscience as to robotics. The recent explosion of interest in what lies behind psychiatric disorders such as anxiety, depression, and addiction has given rise to a set of sophisticated theories that are complex and difficult to test without some sort of advanced situation platform. Professor Seymour explained, “We need a way of modelling the human brain to find how it interacts with the world in real-life to test whether and how different abnormalities in these models give rise to certain disorders. For instance, if we could reproduce anxiety behavior or obsessive-compulsive disorder in a robot, we could then predict what we need to do to treat it in humans.” The team expects that producing robot models of different psychiatric disorders, in a similar way to how researchers use animal models now, will become a key future technology in clinical research. The team also stated that there may also be other benefits to humans and intelligent robots learning, acting, and behaving in the same way. In future societies in which humans and robots live and work amongst each other, the ability to cooperate and empathize with robots might be much greater if we feel they think like us. Professor Seymour said, “We might think that having robots with the human traits of being a bit impulsive or overcautious would be a detriment, but these traits are an unavoidable by-product of human-like intelligence. And it turns out that this is helping us to understand human behavior as human.” The framework for achieving this brain-inspired artificial intelligence was published in two journals, Science Robotics (10.1126/scirobotics.aav2975) on January 16 and Current Opinion in Behavioral Sciences (10.1016/j.cobeha.2018.12.012) on February 6, 2019. Figure 1. Overview of neuroscience - robotics approach for decision-making. The figure details key areas for interdisciplinary study (Current Opinion in Behavioral Sciences) Figure 2. Brain-inspired solutions to robot learning. Neuroscientific views on various aspects of learning and cognition converge and create a new idea called prefrontal metacontrol, which can inspire researchers to design learning agents that can address various key challenges in robotics such as performance-efficiency-speed, cooperation-competition, and exploration-exploitation trade-offs (Science Robotics)
2019.02.20
View 5349
Kimchi Toolkit by Costa Rican Summa Cum Laude Helps Make the Best Flavor
(Maria Jose Reyes Castro with her kimchi toolkit application) Every graduate feels a special attachment to their school, but for Maria Jose Reyes Castro who graduated summa cum laude in the Department of Industrial Design this year, KAIST will be remembered for more than just academics. She appreciates KAIST for not only giving her great professional opportunities, but also helping her find the love of her life. During her master’s course, she completed an electronic kimchi toolkit, which optimizes kimchi’s flavor. Her kit uses a mobile application and smart sensor to find the fermentation level of kimchi by measuring its pH level, which is closely related to its fermentation. A user can set a desired fermentation level or salinity on the mobile application, and it provides the best date to serve it. Under the guidance of Professor Daniel Saakes, she conducted research on developing a kimchi toolkit for beginners (Qualified Kimchi: Improving the experience of inexperienced kimchi makers by developing a monitoring toolkit for kimchi). “I’ve seen many foreigners saying it’s quite difficult to make kimchi. So I chose to study kimchi to help people, especially those who are first-experienced making kimchi more easily,” she said. She got recipes from YouTube and studied fermentation through academic journals. She also asked kimchi experts to have a more profound understanding of it. Extending her studies, she now works for a startup specializing in smart farms after starting last month. She conducts research on biology and applies it to designs that can be used practically in daily life. Her tie with KAIST goes back to 2011 when she attended an international science camp in Germany. She met Sunghan Ro (’19 PhD in Nanoscience and Technology), a student from KAIST and now her husband. He recommended for her to enroll at KAIST because the school offers an outstanding education and research infrastructure along with support for foreign students. At that time, Castro had just begun her first semester in electrical engineering at the University of Costa Rica, but she decided to apply to KAIST and seek a better opportunity in a new environment. One year later, she began her fresh start at KAIST in the fall semester of 2012. Instead of choosing her original major, electrical engineering, she decided to pursue her studies in the Department of Industrial Design, because it is an interdisciplinary field where students get to study design while learning business models and making prototypes. She said, “I felt encouraged by my professors and colleagues in my department to be creative and follow my passion. I never regret entering this major.” When Castro was pursuing her master’s program in the same department, she became interested in interaction designs with food and biological designs by Professor Saakes, who is her advisor specializing in these areas. After years of following her passion in design, she now graduates with academic honors in her department. It is a bittersweet moment to close her journey at KAIST, but “I want to thank KAIST for the opportunity to change my life for the better. I also thank my parents for being supportive and encouraging me. I really appreciate the professors from the Department of Industrial Design who guided and shaped who I am,” she said. Figure 1. The concept of the kimchi toolkit Figure 2. The scenario of the kimchi toolkit
2019.02.19
View 4398
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 118