본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Technology
by recently order
by view order
Artificial Photosynthesis Technology Developed using Solar Cell Material
Humanity is facing global warming and the exhaustion of fossil fuel. In order to remedy these problems, efforts to produce fuel without the production of carbon dioxide using solar energy continues constantly. KAIST’s Professor Park Chan Beom and Professor Ryu Jeong Ki’s research teams of the department of Material Science and Engineering has developed an artificial photosynthesis system that mimics the photosynthesis in nature using solar cell technology. The development of the technology is sure to pave the way to ‘Eco-Friendly Green Biological Process’. Photosynthesis is the process by which a biological entity produces chemical products like carbohydrates using physical and chemical reactions using solar energy as its energy source. Professor Park’s team was able to develop the artificial photosynthesis technology with a biological catalyst as its basis. The result of the experiment was published in ‘Advanced Materials’ magazine on the 26th of April edition and has been patented.
2011.05.11
View 10189
World?'s First Automated Maritime-Docking between Naval Vessels
KAIST demonstrated the technology that allows automated maritime docking between naval vessels on the 26th of April at Busan, Korea. The docking technology is seen as one of the key components for the mobile harbor as it prevents collision between two naval vessels upon docking. It was recognized as an important technology worldwide, but its technological limitations made it hard to commercialize. The demonstrated included approaching a barge next to a cargo vessel, performing automated docking, and maintaining the docking and solutions in the advent of an emergency. The mobile harbor is, in essence, is a ‘moving port’ and the automated docking technology is imperative to commercialize the mobile harbor. In order for a large container ship to unload cargo, the mobile harbor needs to approach the container ship and dock onto the side of the ship. The technology required to keep the two moving vessels docked, out at sea, in an efficient and safe manner, is daunting. The conventional method involved sailors tying the two vessels together with rope which made it time consuming and hard to react quickly in emergency situations. The KAIST mobile harbor research team developed the docking technology with ‘Mirae Industrial Machine’ Maritime Corporation, and ‘Ocean Space’. The mobile harbor will allow two vessels to perform loading and unloading of cargo regardless of wind and current, using robotic arms, vacuum attachment pads, wench, and are a complex, integrated system. KAIST is planning on having a demonstration that encompasses all the technology required for mobile harbor: from the docking technology to the stabilizing crane technology. Advancements made by KAIST are expected to speed up the commercialization and the real life application of mobile harbor.
2011.05.11
View 8970
From Pencil Lead to Batteries: the Unlimited Transformation of Carbon
Those materials, like lead or diamond, made completely up of Carbon are being used in numerous ways as materials or parts. Especially with the discovery of carbon nanotubes, graphemes, and other carbon based materials in nanoscale, the carbon based materials are receiving a lot of interest in both fields of research and industry. The carbon nanotubes and graphemes are considered as the ‘dream material’ and have a structure of a cross section of a bee hive. Such structure allows the material to have strength higher than that of a diamond and still be able to bend, be transparent and also conduct electricity. However the problem up till now was that these carbon structures appeared in layers and in bunches and were therefore hard to separate to individual layers or tubes. Professor Kim Sang Wook’s research team developed the technology that can assemble the grapheme and carbon nanotubes in a three dimensional manner. The team was able to assemble the grapheme ad carbon nanotubes in an entirely new three dimensional structure. In addition, the team was able to efficiently extract single layered grapheme from cheap pencil lead. Professor Kim is scheduled to give a guest lecture in the “Materials Research Society” in San Francisco and the paper was published in ‘Advanced Functional Materials’ magazine as an ‘Invited Feature Article’.
2011.05.11
View 10178
The Harvard Crimson: Engineers Who Can Lead, April 14, 2011
An inspiring opinion on the role of engineers as global leaders in the era of science- and technology-based economies was published in the Harvard Crimson, the university’s newspaper, dated April 14, 2011. The piece was coauthored by Cherry A. Murray, the dean of the Harvard School of Engineering and Applied Sciences, and Andrew R. Garman, a graduate of the Harvard School, who is a managing partner at New Venture Partners. For the opinion piece, please go to http://www.thecrimson.com/article/2011/4/14/engineering-engineers-science-new/. Engineers Who Can Lead By Andrew R. Garman and Cherry A. Murray Published: Thursday, April 14, 2011
2011.04.20
View 8610
Artificial Spore Production Technology Developed
The core technology needed in the development of ‘biosensors’ so crucial in diagnosing illnesses or pathogens was developed by Korean research team. KAIST’s Professor Choi In Seung of the department of Chemistry developed the technology that allows for the production of Artificial Spore by selectively coating a live cell. In the field of engineering the problem in developing the next generation bio sensor, the cell based sensor, was that it was difficult to keep a cell alive without division for a long time. Once a cell is taken out of the body, it will either divide or die easily. Professor Choi’s research team mimicked the spore, which has the capability to survive harsh conditions without division, and chemically coated a live cell and artificially created a cell similar to that of a spore. The physical and biological stabilities of the cell increased by coating an artificial shell over the yeast cell. The shell is composed with a protein similar to that of the protein that gives mussels its stickiness. In addition by controlling the thickness of the shell, the division rate of the yeast can be controlled. Professor Choi commented that this technology will serve as the basis for the single cell based biosensor. The research was conducted together with Professor Lee Hae Shin of KAIST department of Chemistry and Professor Jeong Taek Dong of Seoul National University’s department of Chemistry and was published as the cover paper of ‘Journal of the American Chemical Society’.
2011.04.01
View 11900
MOU on Joint Research Program with KUSTAR
KAIST has signed a MOU on Joint Research Program with KUSTAR (Khalifa, University of Science, Technology, and Research). The Signing ceremony was held in UAE Abu Dhabi with KAIST President Seo Nam Pyo and KUSTAR Presdient Tod Laursen in attendance. The MOU contains agreements on seed money project, exchange professors and students program, seminars and workshops, and cooperative closely through funding joint research facilities among other key agreements. The two universities are considering joint research on educational nuclear power plant simulator, research use nuclear reactor plans and nuclear reactor for saltwater desalination plants. In addition, the field of cooperation will not be limited to nuclear power, but will be broadened to electric and electronic, mechanical engineering, aeronautical engineering, industrial engineering, construction environment, and other fields by appointing KAIST professors to perform educational cooperation programs at KUSTAR. The cooperation is part of the agreement made by the two respective countries in the Korea export of nuclear power plants to UAE in 2009. KAIST will be helping KUSTAR to develop into a world leading science and technology based education and research institute for the next 10 years.
2011.03.25
View 11430
Late Dr. Ryu Geun Chul's Achievements and Generous Contributions
First Doctor in the field of Korean Traditional Medicine The late Dr. Ryu was born in 1926 and is the father figure of Korea’s Traditional Medicine and is its First Doctor (1976 Kyung Hee University), and was the vice-professor of Kyung Hee University of Medicine, Vice-Director of Kyung Hee Institute of Korean Traditional Medicine, and was the first chairman of the Association of Korea Oriental Medicine. He developed the painless acupuncture administering device for the first time in Korea in 1962, and succeeded in anesthetizing a patient for cesarean procedure using acupuncture in 1972. He even was the first to receive a medical engineering doctorate degree from the Moscow National Engineering School in April of 1996 and developed a stroke rehabilitation machine. Korea’s Most Generous Donor Dr. Ryu surprised the world by donating 57.8billion Won worth of real estate to KAIST in August of 2008. Dr. Ryu revealed that his reason for donating such a huge sum to KAIST was due to its focused students giving him the belief that the future of Korea is at KAIST and that the development of science and technology is necessary for Korea to develop into a world class nation and KAIST is the institute most suitable to lead Korea in the field. Dr. Ryu lived on KAIST campus after donating his entire fortune and even established ‘KAIST scholars and spacemen health research center’ and ‘Dr. Ryu Health Clinic’ as he also wanted to donate his knowledge. Even when he was a professor at Moscow National Engineering University in the late 1990s he carried out free medical work throughout Korea and in recognition of his devoted work, he was named honorary citizen from Chun Ahn city, San Chung city, and DaeJeon city. In 2007 he donated 450million Won to Cheon Dong Elementary School in Chun Ahn city to build a gymnasium and an indoor golf practice range. Role as Science and Technology Public Relations Officer Dr. Ryu volunteered to numerous lectures and interviews after donation to advertise science and technology. His belief that the development of science and technology is necessary for Korea’s development was the driving force behind his efforts at increasing interest and support for the field of science and technology. In addition, through interviews with MBC, KBS, SBS, KTV, Joong Ang Newspapers, Dong Ah Newspaper and other media mediums, Dr. Ryu improved the public perception on donations whilst increasing the pride of scientists and researchers by highlighting their importance and the importance of science and technology. In recognition of Dr. Ryu’s efforts, he received the 43rd Science Day Science and Technology Creation Award, 2010 MBC Social Service Special Award, and 2010 ‘Proud Chung Cheong Citizen’ Award.
2011.03.22
View 15209
'S+ Convergence CEO Program' Completion Ceremony
KAIST will be holding the first Completion Ceremony for the ‘S+ Convergence CEO Program’ which is a differentiated course with a new paradigm. The program offers a different syllabus from the existing CEO training programs and focuses on the fusion of industries and IT, fusion of management and security, and fusing together other future technologies. The course should provide the future CEO’s with the ability to plot a suitable creative management strategy in this day of rapid change and growth. The program invited a guest speaker every month, apart from the planed lectures. The guest speakers were the top of their respective fields. In addition, various activities like riding the OLEV or domestic workshops or educational trips abroad imparted the ability to take on a global perspective. The use of Social Network Services like twitter or facebook was educated in the free study period before the lecture began. As a result most of the graduates can now use these SNS freely, better preparing them for the technology oriented direction the world is striving in. The program will have a total of 54 graduates who come from companies from various industries, are politicians, and/or are government officials. The program name “S+ Convergence CEO Program” is imbedded with the program goal of training the best CEO’s by fusing together Smart Technology, Security, and Strategy.
2011.03.18
View 8887
KAIST paves the way to commercialize flexible display screens
Source: IDTechEX, Feb. 28, 2011 KAIST paves the way to commercialize flexible display screens 28 Feb 2011 Transparent plastic and glass cloths, which have a limited thermal expansion needed for the production of flexible display screens and solar power cells, were developed by researchers at KAIST (Korea Advance Institute of Science & Technology). The research, led by KAIST"s Professor Byoung-Soo Bae, was funded by the Engineering Research Center under the initiative of the Ministry of Education, Science and Technology and the National Research Foundation. The research result was printed as the cover paper of "Advanced Materials". Professor Bae"s team developed a hybrid material with the same properties as fiber glass. With the material, they created a transparent, plastic film sheet resistant to heat. Transparent plastic film sheets were used by researchers all over the world to develop devices such as flexible displays or solar power cells that can be fit into various living spaces. However, plastic films are heat sensitive and tend to expand as temperature increases, thereby making it difficult to produce displays or solar power cells. The new transparent, plastic film screen shows that heat expansion index (13ppm/oC) similar to that of glass fiber (9ppm/oC) due to the presence of glass fibers; its heat resistance allows to be used for displays and solar power cells over 250oC. Professor Bae"s team succeeded in producing a flexible thin plastic film available for use in LCD or AMOLED screens and thin solar power cells. Professor Bae commented, "Not only the newly developed plastic film has superior qualities, compared to the old models, but also it is cheap to produce, potentially bringing forward the day when flexible displays and solar panels become commonplace. With the cooperation of various industries, research institutes and universities, we will strive to improve the existing design and develop it further." http://www.printedelectronicsworld.com/articles/kaist_paves_the_way_to_commercialize_flexible_display_screens_00003144.asp?sessionid=1
2011.03.01
View 12396
Interdisciplinary Research on World Environmental Problems with Humanities
KAIST’s Professor Michael Pak (department of Humanities and Social Sciences) has published a paper in ‘Environmental Science and Technology, ES&T’ and was made Lead Feature. His was the only paper published with a humanities background and his topic of discussion was ‘Environmentalism Then and Now: From Fears to Opportunities, 1970-2010’ in which he discussed the history of pro-environment activities, the patterns it showed, and its outlook. Professor Park noted that the problems and concerns over the environment is not a recent phenomenon. It took over 50 years for the environmental problems to resurface after being the ‘hot issue’ of the time during the industrial revolution in the 19th century. Professor Park deduced that there is a clear historical pattern. Professor Park insisted that the two areas of Environmental Research ‘Global Warming’ and ‘Change in Weather’. Especially because these two areas are rife with uncertainty as it is, and making policies based on inaccurate information is taking a gamble. Professor Park majored in history in UC Berkeley, received his masters’ and doctorate at Harvard University and was the professor at Massachusetts College of Art and Design before coming to KAIST at 2008.
2011.02.23
View 10561
Professor Min Beom Ki develops metamaterial with high index of refraction
Korean research team was able to theoretically prove that a metamaterial with high index of refraction does exist and produced it experimentally. Professor Min Beom Ki, Dr. Choi Moo Han, and Doctorate candidate Lee Seung Hoon was joined by Dr. Kang Kwang Yong’s team from ETRI, KAIST’s Professor Less Yong Hee’s team, and Seoul National University’s Professor Park Nam Kyu’s team. The research was funded by the Basic Research Support Program initiated by the Ministry of Education, Science, and Technology and Korea Research Federation. The result of the research was published in ‘Nature’ magazine and is one of the few researches carried out by teams composed entirely of Koreans. Metamaterials are materials that have physical properties beyond those materials’ properties that are found in nature. It is formed not with atoms, but with synthetic atoms which have smaller structures than wavelengths. The optical and electromagnetic waves’ properties of metamaterials can be altered significantly which has caught the attention of scientists worldwide. Professor Min Beom Ki’s team independently designed and created a dielectric metamaterial with high polarization and low diamagnetism with an index of refraction of 38.6, highest synthesized index value. It is expected that the result of the experiment will help develop high resolution imaging system and ultra small, hyper sensitive optical devices.
2011.02.23
View 15519
Success in differentiating Functional Vascular Progenitor Cells (VPC)
KAIST’s Professor Han Yong Man successfully differentiated vascular progenitor cells from human embryonic stem cells and reversed differentiated stem cells. The research went beyond the current method of synthesis of embryonic body or mice cell ball culture and used the careful alteration of signal transmission system of the human embryonic stem cells to differentiate the formation of vascular progenitor cells. The team controlled the MEK/ERK and BMP signal transmission system that serves an important role in the self replication of human embryonic stem cells and successfully differentiated 20% of the cells experimented on to vascular progenitor cells. The vascular progenitor cells produced with such a method successfully differentiated into cells forming the endodermis of the blood vessel, vascular smooth muscle cells and hematopoietic cells in an environment outside of the human body and also successfully differentiated into blood vessels in nude mice. In addition, the vascular progenitor cell derived from human embryonic cells successfully formed blood vessels or secreted vascular growth factors and increased the blood flow and the necrosis of blood vessels when injected into an animal with limb ischemic illness. The research was funded by the Ministry of Education, Science and Technology, 21st Century Frontier Research and Development Institution’s Cell Application Research Department and Professor Ko Kyu Young (KAIST), Professor Choi Chul Hee (KAIST), Professor Jeong Hyung Min (Cha Medical School) and Doctor Jo Lee Sook (Researcher in Korea Bio Engineering Institute) participated in it. The results of the research was published as the cover paper of the September edition of “Blood (IF:10.55)”, the American Blood Journal and has been patented domestically and has finished registration of foreign PCT. The results of the experiment opened the possibility of providing a patient specific cure using stem cells in the field of blood vessel illness.
2011.01.18
View 12415
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
>
다음 페이지
>>
마지막 페이지 28