본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Environment
by recently order
by view order
Professor Sung-Yong Kim Receives the Young Scientist Award
Professor Sung-Yong Kim of the Department of Ocean Systems Engineering at KAIST received the Young Scientist Award for 2014 conferred by the Korean Society of Oceanography (KSO). The award was presented at the KSO’s fall conference that took place on November 6, 2014 at the campus of the Naval Academy of the Republic of Korea in Jinhae. Professor Kim has been recognized for his outstanding research in coastal oceanography and environmental fluid mechanics. His research papers are frequently published in prestigious journals such as the Journal of Geophysical Research-Oceans by the American Geophysical Union.
2014.11.11
View 7210
Professor Sung Yong Kim Appointed as Committee Member to Serve PICES
The Pacific International Council for the Exploration of the Sea: North Pacific Marine Science Organization (PICES) is an intergovernmental organization, which was established in 1992 to promote and coordinate marine research in the North Pacific and adjacent areas. Currently, the United States, Canada, Japan, China, Russia, and Korea are members of the organization. Professor Sung Yong Kim of Ocean Systems Engineering, KAIST, has been appointed to serve the Scientific and Technical Committees of PICES. He will begin his stint from July 1, 2014. During his assignment, Professor Kim will identify the need for observation of the North Pacific marine environment, develop observation methodology, and publish an annual report on the observation. Professor Kim is an expert in marine physics and environmental fluids, with a focus on coastal circulation and dynamics, mesoscale and submesoscale eddies, integrated coastal ocean observing system, and statistical and dynamic data analysis.
2014.06.18
View 7793
Household Scale Indoor Position Tracking Technology Developed
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situation or aid in the finding of a lost smartphone. Professor Han Dong Soo (Department of Computer Sciences) and his research team has developed the technology that enables tracking a smartphone’s location indoors using wireless LAN signals accurate to 10 meters. Because the technology utilizes wireless LAN signals and the address of smartphone users, the technology can be implemented for a low cost all over the world. Conventionally the location of a lost smartphone can be found through a telecommunications company. However the location found using the base station is only accurate to 500m~700m and therefore reclaiming lost smartphones is nearly impossible. In addition, there have been unfortunate events where the kidnapped victim called the police but was murdered due to the inaccuracy of smartphone location tracking. The newly developed technology by Professor Han’s team remedies the inaccuracy of smartphone location tracking. Professor Han’s team collected wireless LAN data recorded in the smartphones for a week to analyze the patterns to distinguish patterns between signals recorded in the workplace and in the household. The stability and accuracy of the technology was verified over a period of five months in various locations across Korea with varying population densities. The result was when the total amount of data collected passes 50% of the number of households, the technology show accuracy to 10 meters. The result showed that the new technology can track the location of the smartphone to 10 meters on a household scale. In addition it was possible to distinguish which floor the smartphone was located. The technology is anticipated to improve smartphone positioning. However caution needs to be practiced as the technology requires the address of the user’s workplace and home.
2012.12.21
View 7692
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situ
Technology that will allow household scale position tracking of smartphones indoors, where GPS signals do not reach, has been developed. It is anticipated that the newly developed technology will enable the tracking of persons indoors in an emergency situation or aid in the finding of a lost smartphone. Professor Han Dong Soo (Department of Computer Sciences) and his research team has developed the technology that enables tracking a smartphone’s location indoors using wireless LAN signals accurate to 10 meters. Because the technology utilizes wireless LAN signals and the address of smartphone users, the technology can be implemented for a low cost all over the world. Conventionally the location of a lost smartphone can be found through a telecommunications company. However the location found using the base station is only accurate to 500m~700m and therefore reclaiming lost smartphones is nearly impossible. In addition, there have been unfortunate events where the kidnapped victim called the police but was murdered due to the inaccuracy of smartphone location tracking. The newly developed technology by Professor Han’s team remedies the inaccuracy of smartphone location tracking. Professor Han’s team collected wireless LAN data recorded in the smartphones for a week to analyze the patterns to distinguish patterns between signals recorded in the workplace and in the household. The stability and accuracy of the technology was verified over a period of five months in various locations across Korea with varying population densities. The result was when the total amount of data collected passes 50% of the number of households, the technology show accuracy to 10 meters. The result showed that the new technology can track the location of the smartphone to 10 meters on a household scale. In addition it was possible to distinguish which floor the smartphone was located. The technology is anticipated to improve smartphone positioning. However caution needs to be practiced as the technology requires the address of the user’s workplace and home.
2012.12.21
View 8537
Sona Kwak wins first prize in international robot design contest
Sona Kwak wins first prize in international robot design contest Sona Kwak (Doctor’s course, Department of Industrial Design) won the first prize in an international robot design contest. Kwak exhibited an emotional robot of ‘Hamie’ at ‘Robot Design Contest for Students’ in Ro-Man 2006/ The 15th IEEE International Symposium on Robot and Human Interactive Communication, which was held at University of Hertfordshire, United Kingdom for three days from September 6 (Wed) and obtained the glory of the first prize. ‘Hamie’, the work of the first prize, has been devised in terms of emotional communication among human beings. The design concept of ‘Hamie’ is a portable emotional robot that can convey even ‘intimacy’ using senses of seeing, hearing, and touching beyond a simple communication function. The design of ‘Hamie’ was estimated to best coincide with the topic of the contest in consideration of its function that allows emotional mutual action between human beings as well as mutual action between human and robot, or robot and robot. ‘Hamie’ is not an actual embodiment but proposed as ‘a concept and design of a robot’. ‘Ro-man’ is a world-famous academic conference in the research field of mutual action between robot and human being, and ‘Robot Design Contest for Students’ is a contest to scout for creative and artistic ideas on the design and structure of future robots and exhibits works from all over world. Kwak is now seeking to develop the contents and designs of various next-generation service robots such as ▲ ottoro ? cleaning robot ▲ robot for blind ▲ robot for the old ▲ robot for education assistance ▲ robot for office affairs ▲ ubiquitos robot in her lab (PES Design Lab) led by Professor Myungseok Kim. “I’ve considered and been disappointed about the role of designers in robot engineering while I’ve been designing robots. I am very proud that my robot design has been recognized in an academic conference of world-famous robot engineers and gained confidence,” Kwak said.
2006.09.27
View 15453
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2