본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
Magazine
by recently order
by view order
Biomimetic Carbon Nanotube Fiber Synthesis Technology Developed
The byssus of the mussel allows it to live in harsh conditions where it is constantly battered by crashing waves by allowing the mussel to latch onto the seaside rocks. This particular characteristic of the mussel is due to the unique structure and high adhesiveness of the mussel’s byssus. KAIST’s Professor Hong Soon Hyung (Department of Material Science and Engineering) and Professor Lee Hae Shin (Department of Chemistry) and the late Professor Park Tae Kwan (Department of Bio Engineering) were able to reproduce the mussel’s byssus using carbon nanotubes. The carbon nanotube, since its discovery in 1991, was regarded as the next generation material due to its electrical, thermal, and mechanical properties. However due to its short length of several nanometers, its industrial use was limited. The KAIST research team referred to the structure of the byssus of the mussel to solve this problem. The byssus is composed of collagen fibers and Mefp-1 protein which are in a cross-linking structure. The Mefp-1 protein has catecholamine that allows it to bind strongly with the collagen fiber. In the artificial structure, the carbon nanotube took on the role of the collagen fibers and the macromolecular adhesive took on the role of the catecholamine. The result was a fiber that was ultra-light and ultra-strong. The results of the experiment were published in the Advanced Materials magazine and is patent registered both domestically and internationally.
2011.06.20
View 11759
From Pencil Lead to Batteries: the Unlimited Transformation of Carbon
Those materials, like lead or diamond, made completely up of Carbon are being used in numerous ways as materials or parts. Especially with the discovery of carbon nanotubes, graphemes, and other carbon based materials in nanoscale, the carbon based materials are receiving a lot of interest in both fields of research and industry. The carbon nanotubes and graphemes are considered as the ‘dream material’ and have a structure of a cross section of a bee hive. Such structure allows the material to have strength higher than that of a diamond and still be able to bend, be transparent and also conduct electricity. However the problem up till now was that these carbon structures appeared in layers and in bunches and were therefore hard to separate to individual layers or tubes. Professor Kim Sang Wook’s research team developed the technology that can assemble the grapheme and carbon nanotubes in a three dimensional manner. The team was able to assemble the grapheme ad carbon nanotubes in an entirely new three dimensional structure. In addition, the team was able to efficiently extract single layered grapheme from cheap pencil lead. Professor Kim is scheduled to give a guest lecture in the “Materials Research Society” in San Francisco and the paper was published in ‘Advanced Functional Materials’ magazine as an ‘Invited Feature Article’.
2011.05.11
View 10126
Artificial Photosynthesis Technology Developed using Solar Cell Material
Humanity is facing global warming and the exhaustion of fossil fuel. In order to remedy these problems, efforts to produce fuel without the production of carbon dioxide using solar energy continues constantly. KAIST’s Professor Park Chan Beom and Professor Ryu Jeong Ki’s research teams of the department of Material Science and Engineering has developed an artificial photosynthesis system that mimics the photosynthesis in nature using solar cell technology. The development of the technology is sure to pave the way to ‘Eco-Friendly Green Biological Process’. Photosynthesis is the process by which a biological entity produces chemical products like carbohydrates using physical and chemical reactions using solar energy as its energy source. Professor Park’s team was able to develop the artificial photosynthesis technology with a biological catalyst as its basis. The result of the experiment was published in ‘Advanced Materials’ magazine on the 26th of April edition and has been patented.
2011.05.11
View 10146
Genetic Cause of ADHD (Attention Deficit Hyperactivity Disorder) Found
The cooperative research team consisting research teams under Professor Kim Eun Joon and Professor Kang Chang Won of the department of Biological Sciences discovered that ADHD arises from the deficiency of GIT1 protein in the brain’s neural synapses. ADHD (Attention Deficit Hyperactivity Disorder) is found in around 5% of children around the world and is a disorder where the child becomes unable to concentrate, show over the top responses, and display impulsive behavior. The research team found that the difference between children with ADHD and those without it is one base in the GIT1 gene. The difference of a single base causes the underproduction of this protein, and those children with low levels of the protein had a higher probability to develop ADHD. In addition, further evidence was provided when the research team conducted mice experiments. Those mice with low levels of GIT1 exhibited impulsive and exaggerated reactions like humans with ADHD, had learning disabilities, and produced abnormal brain waves. And upon injecting these mice with cure for ADHD, the symptoms of ADHD disappeared. The impulsive behavior of ADHD children disappears as the child enters adulthood and a similar pattern was found in mice. A mice with low levels of GIT1 showed impulsive behaviors when 2 months old, but these behaviors disappeared as it got older to around 7 months old (equivalent to 20~30 years old for humans). Professor Kim Eun Joon commented that there has to be equilibrium between mechanisms that excite the neurons and mechanisms that calm the neurons, but the lack of GIT1 leads to the decrease in the mechanisms that calm the neurons which causes the impulsive behavior of ADHD patients. In addition, Professor Kang Chang Won commented that the results of the experiment has been receiving rave reviews and is being seen as the new method in the production of the cure for ADHD. The result of the experiment was published in the online edition of Nature Medicine magazine.
2011.04.30
View 9952
A Light Weight, Energy Effcient Household Polysomnography (PSG) System Developed
A smart ‘household polysomnography (PSG) system’ was developed by domestic research team. Professor Yoo Hui Joon and his research team of KAIST’s department of Electricity and Electronic Engineering successfully developed a PSG system that is light weight and has high performance levels. The conventional PSG systems were complex with numerous lines and wires. The PSG is used to monitor biological signals during sleep and the monitored results are used to diagnose and cure sleep-related illnesses and disorders. However because of restrictions like the size of the machine, impurities, and the change in environment, multiple trials over several days were required to obtain accurate data. The system developed by the research team is lighter than a q-tip so as to not disturb the patient’s sleep. It also has Intelligent Circuit (IC) that detects when sensors come detached and automatically replaces the sensor with another sensor thereby allowing continual monitoring of the user. A low-power consuming circuit was implemented allowing the entire system to run continuously on a single coin battery for 10 hours which effectively decreased the weight of the system and simultaneously allows for uninterrupted monitoring of the user over the entire sleep cycle. Even a remote diagnosis system can be implemented. The user will don the PSG and sleep at home, ensuring that a normal heat beat rate, brain waves, breathing, etc. will be monitored. The data procured overnight can be sent to the experts online who will be able to diagnose remotely. The research team plans on performing research in cooperation with the KAIST hospital and U-Healthcare research. The research result is winning worldwide rave. The system was announced in the International Solid-State Circuits Conference (ISSCC) and was published in ISSCC magazine and in Japan’s NIKKEI Electronics January edition.
2011.03.25
View 10753
World Research University Heads To Discuss Global Networking at KAIST Symposium
About 70 leaders of the world"s major research universities will discuss how to strengthen and operate global networks to share faculty, students, facilities and other resources for common advancement at a symposium Monday, Sept. 8, at the Westin Chosun Hotel in Seoul organized by KAIST, Korea"s foremost institute of science and technology education and research. Participants of the 1st International Presidential Forum on Global Research Universities are from 39 universities in 20 countries. They include nine presidents of Korean universities. The international symposium, the first such event to be held in Korea, will proceed in five panel sessions. The subjects of each session and their keynote speakers are: -- "Roaming Professorships: To Whose Benefit?" by Dr. John Anderson, president of the Illinois Institute of Technology, USA,-- "Dual Degree Programs: Future Potential and Challenges" by Dr. Paul Greenfield, president of the University of Queensland, Australia, -- "Sharing Facilities and Expertise" by KAIST President Nam Pyo Suh,-- "An Approach to Joint Research Ventures with NASA" by Yvonne Pendleton, NASA, and-- "Globalization through Interfacing with Existing Networking" by Dr. Lars Pallesen, rector of the Technical University of Denmark. KAIST President Suh said of the purpose of the conference: "Research universities have become global enterprises. Collaborations that were once primarily between individual researchers are now increasingly occurring at institutional and international levels. Similarly, educating students which used to be the responsibility of a single university has now become a multi-institutional undertaking, involving many universities in different countries. "Now leading research universities in many countries depend on the continuous supply of outstanding graduate students from the "feeder" schools of developing nations. There are concerns that the current system may not be serving the interest and need of some institutions, especially those in developing nations. This should be examined and understood to devise international mechanisms that can accentuate the positive aspects of globalization. "Through this forum, we hope to forge an international network of universities that will strengthen the effort of individual universities and create alliance for research and education that can become a new paradigm for global collaboration." Prime Minister Han Seung-soo will give a speech at a dinner after the conclusion of the symposium. President of the Korea International Traders Association Lee Hee-beom will make a welcoming address at the start of the conference. Co-sponsors of the international university presidents" forum include the Dong-a Ilbo, a major national daily, and the Dong-a Science magazine. The research universities presidential forum will be followed on Sept. 9 by an international academic workshop at KAIST"s Daejeon campus on EEWS (Energy, Environment, Water and Sustainability). Under the theme of "Challenges as Opportunities," research teams from MIT, CalTech, the Korean Ministry of Knowledge and Economy, KAIST Institute and KAIST EEWS team will present their research results at the workshop. Major Korean businesses, including SK Energy, GS Caltex and the Samsung Group will also introduce their research programs concerning EEWS, the most pressing prblems of today"s world. A groundbreaking ceremony will be held at the KAIST campus in the afternoon of the same day for the construction of the KI Building, which will house all the eight research institutes of KAIST. The KI for Bio Century, KI for IT Convergence, KI for Design of Complex Systems, KI for Entertainment Engineering, KI for Eco-Energy, KI for Urban Space and Systems, and the KI for Optical Science and Technology were established between 2006 and 2008. More than 230 professors from 18 departments have actively engaged in research activities in their respective fields. KAIST will start construction of the Pappalardo Medical Center in a ceremony on Wednesday with the attendance of Mr. Neil Pappalardo, chairman-CEO of Meditech Inc. of the United States who donated $2.5 million for the project. The medical facility for KAIST students, faculty and the residents of the university area will be completed in September 2009. The President"s Advisory Council (PAC) for KAIST will hold its 3rd general meeting on Sept. 10 to discuss KAIST"s short- and long-term strategies to become the world"s top-ranked research university. The PAC was formed in 2006 with 11 foreign and 14 domestic figures from the business and academic circles. Foreign PAC members include John Holzrichter, president of Fannie and John Hertz Foundation; Donald C. W. Kim, chairman of AMKOR A&E, Inc.; Chong-Moon Lee, chairman of AmBex Venture Group; Byung-Joon Park, founder of Bureau Veritas CPS, Inc.; Lars Pallesen, rector of the Technical University of Denmark. PAC members have advised the KAIST president on international publicity on KAIST"s academic excellence, fund-raising, and promotion of cooperative relations with overseas institutions.
2008.09.04
View 18050
KAIST to hold 2008 Int
KAIST, Korea"s premier science and technology research university, will hold the 1st International Presidential Forum on Global Research Universities at the Westin Chosun Hotel in Seoul on Sept. 8, 2008. Presidents of research universities in all regions of the world have been invited to the conference aimed primarily at identifying common issues and opportunities in strengthening globalization of higher education and research. Participants in the forum will exchange views and ideas on how to build and utilize global research network to promote the sharing of expertise and facilities, conduct joint researches and effectively implement dual degree and roaming professorship programs. KAIST President Dr. Nam P. Suh said of the purpose of the conference: "Research universities have become global enterprises. Collaborations that were once primarily between individual researchers are now increasingly occurring at institutional and international levels. Similarly, educating students which used to be the responsibility of a single university has now become a multi-institutional undertaking, involving many universities in different countries. "Now leading research universities in many countries depend on the continuous supply of outstanding graduate students form the "feeder" schools of developing nations. There are concerns that the current system may not be serving the interest and need of some institutions, especially those in developing nations. This should be examined and understood to devise international mechanisms that can accentuate the positive aspects of globalization. "Through this forum, we hope to forge an international network of universities that will strengthen the effort of individual universities and create alliances for research and education that can become a new paradigm for global collaboration." Keynote presentations will be made on the following five major subjects: -- Roaming Professorship-- Dual Degree Program-- Sharing Facilities and Expertise-- Joint Research, and-- Globalization through Interfacing with Existing Networking Leaders of the world"s major education and research institutions have been asked to lead panel discussions with their rich experiences in globalization programs. Following the conference in Seoul, participants are invited to come to the KAIST campus in Daejeon, about 150 kilometers from Seoul, where a symposium on EEWS (environment, energy, water and sustainability) will be held to examine the progress in interdisciplinary research activities in these vital problems facing the mankind and look for a new direction in international collaboration. Co-sponsors of the International Presidential Forum include the Dong-A Ilbo, a major national daily, and the Dong-A Science Magazine. Message from KAIST President Suh: Research universities have become global enterprises. Collaborations that were once primarily between individual researchers are now increasingly occurring at institutional and international levels. Similarly, educating students used to be the responsibility of a single university but has now become a multiinstitutional undertaking, involving many universities in different countries. These changes are a consequence of globalization and integration of the world’s economy. Temporal andgeographical separations are no longer barriers to the collective generation and transfer of knowledge andenlightened education. It is also a natural response to the demand for educated workforce who can functionin any country. Current globalization was preceded by the migration of graduate students who were seeking to fulfill theiraspirations for better education at the world’s leading universities. This international movement of studentshas benefited not only students but research universities as well. Now leading research universities in manycountries depend on the continuous supply of outstanding graduate students from the “feeder” schools ofdeveloping nations. There are some concerns that the current system may not be serving the interest and need of some institutions,especially those in developing nations. This should be examined and understood to devise institutionalmechanisms that can accentuate the positive aspects of globalization. The purpose of the International Forum of Research University Presidents, which will be held on Sept. 8 inSeoul, Korea, is to identify common issues and opportunities for research universities that further strengthenglobalization of higher education and research. Participants will hear diverse views and ideas and will learnfrom those who have been active in global education and research. Participants also will examine dualdegree programs that are already in place among many universities and the effective implementation of aglobal research network. Through this process, we hope to forge an international network of universities that will strengthen the effortof individual universities and create alliances for research and education that can become a new paradigm forglobal collaboration. Looking forward to meeting you in Seoul, Prof. Nam P. SuhPresidentKAIST Tentative Program(Theme: Global Science and Technology Networking) Sept. 7, 2008, Sunday 17:00 - 18:30 RegistrationSept. 8, 2008, Monday09:00 - 09:10 Opening Ceremony09:10 - 09:40 I. Keynote Presentation: Roaming Professorship09:40 - 10:20 Panel Presentations:- Improving the competitiveness of global university education- Sharing differences in culture and environment for sustainable education for the future generation- Promoting science and engineering education among secondary students- Preserving and utilizing expert knowledge for better education10:20 - 10:40 Open Discussion10:40 - 11:00 Coffee Break11:00 - 11:30 II. Keynote Presentation: Dual Degree Program11:30 - 12:10 Panel Presentations:- Benefits of dual degree program- The role of dual degree program easing brain drain- Global branch campus or dual degree program?- Raising international IQs of scientists and engineers for global enterprises12:10 - 12:30 Open Discussion12:30 - 14:00 Luncheon14:00 - 14:30 III. Keynote Presentation: Sharing Facilities and Expertise14:30 - 15:10 Panel presentations:- How to spin off international joint ventures from the sharing of research facilities and expertise- Economic benefits of sharing research facilities and expertise- How to communicate science and technology agenda to political leaders- Easing the gap between the developed and less developed regions through science and technology cooperation15:10 - 15:30 Open Discussion15:30 - 16:00 IV. Keynote Presentation: Joint Research16:00 - 16:40 Panel Presentations:- Benefits of international joint project- Ways to formulate the international joint projects- Sharing intellectual property rights- Global economic and social contributions of international joint project cooperation16:40 - 17:00 Open Discussion17:00 - 17:30 Coffee Break17:30 - 18:00 V. Keynote Presentation: Globalization through Interfacing with Existing Networking18:00 - 18:40 Panel Presentations:- Establishing global science and technology networking- The role of global science and technology networking for the higher education of the next century- Regionalized or globalized science and technology networking- Connecting regional science and technology networks for the global networking18:40 - 19:00 Open Discussion19:00 - 19:15 Closing Remarks by President Suh19:15 - 21:30 Banquet Venue: Westin Chosun Hotel, Seoul
2008.07.17
View 17354
The US Science Magazine Published KAIST News on Nov. 30
An educational innovation of our university arouses world"s interest. The world science magazine, the U.S Science reports deeply President Suh Nampyo" KAIST reform, fund, tenure review, tuition, admission and faculty recruit in News Focus, internet version on 30 November. There is full text of the news below.http://www.sciencemag.org/cgi/content/full/318/5855/1371 News FocusHIGHER EDUCATION:MIT Engineer Shakes Korean Academia to Its CoreDennis Normile Radical measures from the new president of the Korea Advanced Institute of Science and Technology are roiling a tradition-bound system Worldly. To gain stature beyond Korea, KAIST has lured students from Vietnam, China, and Rwanda, among other countries. CREDIT: D. NORMILE/SCIENCE DAEJEON, SOUTH KOREA--When the Korea Advanced Institute of Science and Technology (KAIST) announced on 19 November that an entrepreneur had donated $2.5 million to the university with promises of more to follow, it marked the latest in a string of coups for the new president, Suh Nam Pyo. A mechanical engineer on leave from the Massachusetts Institute of Technology (MIT) in Cambridge, Suh has raised an unprecedented amount--$12.5 million--in a country where donations to universities are rare. He"s challenging other traditions as well. For example, KAIST"s latest tenure review turned down several candidates, a shocking move by Korean standards.Suh says he is aiming to make KAIST "as good as the best [universities], including MIT." Many faculty members agree that Suh"s "overall philosophy and vision are correct," says KAIST systems biologist Lee Sang Yup. But there are concerns about how Suh will implement that vision at the 36-year-old university. The KAIST community has reason to be cautious. In 2004, the university hired Nobel physics laureate Robert Laughlin as president--the first foreigner to lead a Korean university--with a mandate to transform KAIST into a world-class institution. Laughlin, on leave from Stanford University in Palo Alto, California, proposed privatizing KAIST and charging tuition, focusing on commercialization, and tripling undergraduate enrollment (Science, 25 February 2005, p. 1181; 20 January 2006, p. 321). But when Laughlin"s plans failed to materialize, "the faculty was disappointed," says KAIST molecular biologist Chung Jongkyeong. In 2006, the board of trustees decided to seek a new president. The board turned to Suh. Born in Gyeongju, South Korea, in 1936, Suh moved to the United States with his family as a teenager and earned a doctorate in mechanical engineering from Carnegie Mellon University in Pittsburgh, Pennsylvania. As an MIT professor, Suh has won plaudits for his engineering design theories, earned more than 50 patents, and helped start several companies. In the early 1980s, he was assistant director for engineering at the U.S. National Science Foundation, and he headed MIT"s Department of Mechanical Engineering from 1991 until 2001. Since arriving at KAIST in July 2006, Suh has opened undergraduate education to non-Korean students for the first time by insisting that many courses be taught in English. Suh decided that students who maintain "B" or better grades would continue to pay no tuition, whereas those with a "C" or below must pay about $16,000 per year starting in February. "We want students to take responsibility for their actions," Suh says. Agent of change. KAIST"s faculty supports Suh Nam Pyo"s reforms, so far. CREDIT: KAIST A new admissions process may also have broad impact. Previously, KAIST, like most of Korea"s top universities, selected the top scorers in a written exam. Most high school students spend their free time prepping for these tests in cram schools. But Suh says that scores "are a one-dimensional measure" that fails to identify leaders. So candidates for KAIST"s next incoming class were invited to campus this fall for interviews, to give presentations, and to engage in discussions while being observed by faculty members, who made selections based on scores and personal impressions. "We"re looking for future Einsteins and future Bill Gateses," says Suh.An even more radical step was putting teeth into tenure reviews. Traditionally, faculty members in Korea gain tenure after logging enough years. Suh insisted that KAIST professors up for tenure gather endorsements from experts in their field around the world. In September, 11 of 33 applicants were denied tenure and were given a year to find new jobs. The tenure review "is the beginning of an educational revolution," says KAIST chemist Ryoo Ryong. But he and others worry about the fate of those denied tenure. Suh understands their predicament but is standing firm. The professors who didn"t make tenure "are very good people, but in terms of the standard we set, they"re not as good as we expect our professors to be." He is asking other universities to consider giving these professors a chance. At the same time, Suh is looking to inject fresh blood--including foreigners--into the 418-strong faculty with a plan to add 300 professors over the next 4 to 5 years. (To expand the school, Suh is striving to win government approval for a doubling of KAIST"s base governmental support of $108 million.) His first catch is Mary Kathryn Thompson, who completed her Ph.D. in mechanical engineering at MIT last year. "It"s an exciting time to be here," says Thompson, who just started studying Korean when she arrived last August. Although they support Suh"s initiatives, some faculty members chafe at his blunt public comments implying that Korea"s professors take life too easy. "I cannot agree," says Choi Yang-Kyu, an electrical engineer. "Most professors here are working very hard." Biomolecular engineer Kim Hak-Sung adds: "President Suh should have sticks and carrots, not just sticks." Carrots don"t come cheap. "I"m spending most of my time trying to raise money," Suh says. Part of that effort is wooing private donors. "Giving to universities is not prevalent in Asia, but it is something I"m trying to nurture in Korea," he says. That"s a precedent all of Korea"s universities might want to embrace.
2007.11.30
View 14836
Nerve-protecting gene discovered
Korean scientists for the first time have identified a gene that blocks nerve damage from fevers and the use of narcotics, a state-run research institute said yesterday. The finding may open the way for new medicine that can prevent the loss of brain function which is frequently caused by excessive stimulation of nerves and abnormally high body temperature. "The research is in an early stage. But this approach has the potential to develop genetics-based preventatives against brain-attacking diseases," said Kim Jae-seob, a bioscience professor of the Korea Advanced Institute of Science and Technology, who led the study. The researchers named the gene Pyrexia, which means fever. Kim"s team extracted it from genetically engineered fruit flies using a genome-screening system. In laboratory tests, they found that the gene is activated to 39 degrees Celsius or higher. The researchers enhanced Pyrexia"s functionality in some fruit flies while removing the gene from others to observe their different reactions when exposed to high temperature. "The fruit flies without the gene showed severe nerve disorder and suffered paralysis of brain function, while Pyrexia-enhanced flies maintained their normal brain conditions," the professor said. The researchers got the same result from experiments with human cells, he said. There are a lot of channel proteins, which enable ions to enter and exit the cell, that react to the level of temperature, but Pyrexia is the first of its kind that actually protects the neurons from external stimulus, he said. The finding will appear on the March edition of the London-based science magazine Nature Genetics. THE KOREA HERALD 2005.1.31 (thkim@heraldm.com) By Kim Tong-hyung
2005.02.02
View 13814
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2