본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
BIT
by recently order
by view order
KAIST, First to Win the Cube Satellite Competition
Professor Hyochoong Bang from the Department of Aerospace Engineering and his team received the Minister of Science and ICT Award at the 1st Cube Satellite Competition. The team actually participated in the competition in 2012, but it took several years for the awarding ceremony since it took years for the satellites to be designed, produced, and launched. The KAIST team successfully developed a cube satellite, named ‘Little Intelligent Nanosatellite of KAIST (LINK)’ and completed its launch in April 2017. LINK (size: 20cmx10cmx10cm, weight: 2kg) mounted mass spectrometry and Langmuir probe for Earth observation. The Langmuir probe was developed by Professor Kyoung Wook Min from the Department of Physics, KAIST. Yeerang Lim, a PhD student from the Department of Aerospace Engineering said, “I still remember the feeling that I had on the day when LINK launched into orbit and sent back signals. I hope that space exploration is not something far away but attainable for us in near future.”
2018.02.22
View 9277
KAIST Holds Its Fourth Public Art Exhibition
KAIST hosted an opening ceremony for the annual art exhibition on December 3, 2015 at the KAIST Institute building. The KAIST Art and Design Committee first organized the event in 2012 to promote the integration of art and technology. This year’s event entitled “Understanding the Purpose of an Object” will display 20 art pieces under six themes. Artist Keumhong Lee, Haeyool Roh, Joon Kim, Kyung Lee, and Juhae Yang participated in the exhibition. The names of some of the art pieces include “Feedback Field” by Joon Kim, “Self Action” by Haeyool Roh, and “Net of Time” by Juhae Yang. Juhae Yang believes that, in the digital age, an identity of an object is defined by the traces of light which we read in the information hidden in the barcodes. Based on this interpretation, she transforms the black bars and white spaces into a harmony of colors and sounds. The continuum of colors and sounds in her work arouses time-space synesthesia. Professor Sangmin Bae of the Industrial Design Department, the Director of the KAIST Art and Design Committee, hopes that the exhibition will inspire novel scientific ideas and artistic spirits. The exhibition will remain open to the public until December 20, 2015.
2015.12.03
View 7334
Open KAIST 2015
KAIST’s research environment and its most recent achievements were open to the public. KAIST hosted “Open KAIST 2015” over two days from November 5-6, 2015 in which its 17 departments and three research centers were open to the public. The event is one of the largest events that KAIST holds, which permits such public viewings of its facilities. It is the eighth time it has taken place. During this event, the departments and centers offered 64 programs including laboratory tours, research achievement exhibitions, department introductions, and special lectures. The “Motion Capture System”of Professor Jun-Yong Noh’s lab (Graduate School of Culture Technology) drew particular attention. The “Motion Capture System” expresses human and animal motion in three-dimensional (3D) space using infrared cameras and optic markers, which can then be applied to various industries such as movies, games, and animation. During the program, researchers themselves demonstrated the recording of the movement and its conversion into 3D characters. Professor Yong-Hoon Cho’s laboratory introduced the scientific mechanism behind the Light Emitting Diode (LED) as well as its manufacturing process under the topic:“A to Z of LED Production.” The reserachers explained that how green LED is much more efficient compared to previous light sources and presented applications that how it is widely used in everyday life in smart phones, electronic displays, and other mobile gadgets. Professor Jun-tani of the Department of Electronic and Electrical Engineering introduced “Humanoid Robot Nao’s Imitation of Human Motions.” Nao is an autonomous, programmable humanoid robot developed by a French robotics company based in Paris. Nao has an artificial neural circuit, which is the functional equivalent of a human brain, and can thus mimic the subject’s motions through learning. In addition, Professor Hyo-Choong Bang (Department of Aerospace Engineering) in his lecture on “Unmanned Vehicle Research and Nano Satellites” and Professor Hyun Myung (Department of Civil and Environmental Engineering) on his lecture on “Future Civilization Robot System: the Jellyfish Elimination Robotic Swarm and the Wall-Climbing Drone” provided information on the progress of their respective research. KAIST also displayed its most recent research achievements. A lecture on “Information Technology Convergence” offered a showroom for “Dr. M,” which is a mobile healthcare platform. Dr. M is a mobile healthcare system that collects and analyzes biosignals via a smart sensor attached to the human body that shows around 20 advanced technologies. The Satellite Technology Research Center introduced the public to its “Get to Know Satellites” program on Korea’s first satellite “Our Star 1” in addition to showing the satellite assembly room and the satellite communication center. Special lectures were also held for visitors. Professor Min-Hyuk Kim and Hye-Yeon Oh of the School of Computing talked about “Computer Graphics and Advanced Video Technology” and “Man and the Computer,” respectively, from the perspective of non-experts. Another interesting feature was the “Wearable Computer Competition” in which college students held fashion shows with computers attached to their clothes. Professor Jung Kwon Lee, the Dean of the College of Engineering, who led this event, said that “the Open KAIST, which is being held for the eighth time this year, is an excellent opportunity for the general public to experience KAIST’s research environment.” He hoped this could motivate young adults to widen their spectrum of scientific knowledge and raise affection for science.
2015.11.13
View 9300
KAIST's Graduate School of Culture Technology Celebrates Its Tenth Anniversary
The Graduate School of Culture Technology (GSCT) at KAIST hosted a ceremony and a variety of events to celebrate its tenth anniversary on October 22, 2015, on campus. Established in 2005 with the support of the Ministry of Culture, Sports and Tourism of the Republic of Korea, GSCT offers an intensive, in-depth education in culture technology, an interdisciplinary field first introduced in Korea by KAIST, which brings arts, humanities, science, and technology together in an academic and research arena. Over the years, the graduate school has fostered top-notch researchers and professionals who have played a leading role in the development of a Korean culture contents industry that includes movies, broadcasting programs, music, games, and culture events. After the anniversary ceremony, GSCT held a "Demo Day" to showcase its major research projects. A total of 41 projects were presented under the themes of “Art and Science,” “Human and Humane,” and “Virtual Reality vs Reality.” In addition, there was a seminar held on GSTC’s ten-year accomplishment and future planning with the school’s Professors Sunghee Lee, Juyong Park, and Juhan Nam; a cultural event for the public called the “Talk Concert,” which included many professionals in culture industry and academia to share ideas and views; and the Homecoming Day for GSTC graduates. So far, the graduate school has produced 295 masters and 34 doctors. About 34% of its graduates are employed in the movie, game, and broadcasting sectors, 33% in the social networking service and Internet industry, and 33% in performing art and exhibition and event. Dong-Man Lee, the Dean of KAIST's Graduate School of Culture Technology, said, “We will continue to develop our school to lead the advancement of the Korean culture industry, contributing to the growth of Korean Wave, the popularity of Korean culture, in the global community.” In the picture below, Dean Lee delivers a speech to celebrate the school’s tenth anniversary. Soo-Man Lee, the founding chairman of S.M. Entertainment, speaks at the Talk Concert. Scenes from the Demo Day
2015.10.26
View 7333
KAIST College of Business Held "Creativity Fusion Camp" for Multicultural Family Students
Students from the College of Business, KAIST, held the Creativity Fusion Camp for 77 multicultural students from May 31 to June 1 at the KAIST campus in Daejeon. The camp was funded through an education donation program which was created to support multicultural students who are interested in science. $20,000 was raised by 100 participants in a fund-raising marathon including students in the KAIST Business School. The camp was only for multicultural students, and their participation was free of charge. Nationally, 100 applicants were evaluated over 10 days beginning May 14, and 30 elementary school students and 47 junior high school students were selected. The camp centered around creating mini games with rare programming languages. Drawing sounds, exploring computational thinking, making animations, and designing mini games were the other programs students took part in. Sung-Hyun Cha, the student council leader of the College of Business, said, “We have been pondering over how to truly benefit people who are economically and socially underprivileged in our society, apart from simply giving financial donations. I hope this camp will be an important chance for multicultural students to enjoy science.” Jae-Hyun Ahn, Vice-Dean of the College of Business, said, “Many of the activities of the College of Business have mostly focused on learning, but now we have to turn our attention into serving others as well. This is the new education model that KAIST has been endeavoring to build.” The KAIST College of Business has made contributions and donations to help people in need by partnering with the Habitat for Humanity and Babper Service and undertaking charity bazaars and auctions. [Picture Caption]Participants of the KAIST Run Creativity Fusion Camp smiling on May 31 at the Creative Learning Building
2014.06.09
View 7604
Green Technology for Data Centers: Ultra-low Power 100 Gbps Ethernet Integrated Circuit Developed
A new integrated circuit (IC), consuming only 0.75W of electricity, will reduce the power usage of data chips installed at data centers by one-third. Each day, billions of people surf the Internet for information, entertainment, and educational content. The Internet contains an immeasurable amount of information and knowledge generated every minute all around the world that is readily available to everyone with a click of a computer mouse. The real magic of the Internet, however, lies in data centers, where hundreds of billions of data are stored and distributed to designated users around the clock. Today, almost every business or organization either has its own data centers or outsources data center services to a third party. These centers house highly specialized equipment responsible for the support of computers, networks, data storage, and business security. Accordingly, the operational cost of data centers is tremendous because they consume a large amount of electricity. Data centers can consume up to 100 times more energy than a standard office building. Data center energy consumption doubled from 2000 to 2006, reaching more than 60 billion kilowatt hours per year. If the current usage and technology trends continue, the energy consumption of data centers in the US will reach 8% of the country’s total electric power consumption by 2020. A research team at the Korea Advanced Institute of Science and Technology (KAIST) and Terasquare, Inc. ( http://www.terasquare.co.kr ), a spin-off company of the university, developed an extremely low-powered integrated circuit for Ethernet that consumes less than 0.75W of electricity but is able to send and receive data at the high speed of 100 gigabits per second (Gbps). The research team, headed by Hyeon-Min Bae, assistant professor of electrical engineering at KAIST, claims that the new microchip uses only one-third of the electricity consumed by the currently installed chips at data centers, thereby helping the centers to save energy. Integrated circuits are embedded on communication modules that are inserted into a line card. Data centers have numerous line cards to build a network including routers and switches. Currently, 8W ICs are the most common in the market, and they consume a lot of energy and require the largest modules (112 cm 2 of CFP), decreasing the port density of line cards and, thus, limiting the amount of data transmission. The ultra-low-power-circuit, 100-gigabit, full-transceiver CDR, is the world’s first solution that can be loaded to the smallest communication modules (20 cm 2 of CFP4 or 16 cm 2 of QSFP28), the next-generation chips for data centers. Compared with other chip producers, the 100 Gbps CDR is a greener version of the technology that improves the energy efficiency of data centers while maintaining the high speed of data transmission. Professor Hyeon-Min Bae said, “When we demonstrate our chip in September of this year at one of the leading companies that manufacture optical communication components and systems, they said that our product is two years ahead of those of our competitors. We plan to produce the chip from 2014 and expect that it will lead the 100 Gbps Ethernet IC market, which is expected to grow to USD 1 billion by 2017.” The commercial model of the IC was first introduced at the 39 th European Conference and Exhibition on Optical Communication (ECOC), the largest optical communication forum for new results and developments in Europe, held from September 22-26 at ExCeL London, an international exhibition and convention center. Professor Bae added, “We received positive responses to our ultra-low-power 100-Gbps Ethernet IC at the ECOC. The chip will be used not only for a particular industry but also for many of next-generation, super-high-speed information communications technologies, such as high-speed USB, high-definition multimedia interface (HDMI), and TV interface.” Before joining KAIST, Hyeon-Min Bae worked for many years at Finisar as a researcher who designed and developed the world’s first super-high-speed circuit, the 100 Gbps Ethernet IC.
2013.11.25
View 8486
3D contents using our technology
Professor Noh Jun Yong’s research team from KAIST Graduate School of Culture Technology has successfully developed a software program that improves the semiautomatic conversation rate efficiency of 3D stereoscopic images by 3 times. This software, named ‘NAKiD’, was first presented at the renowned Computer Graphics conference/exhibition ‘Siggraph 2012’ in August and received intense interest from the participants. The ‘NAKiD’ technology is forecasted to replace the expensive imported equipment and technology used in 3D filming. For multi-viewpoint no-glasses 3D stereopsis, two cameras are needed to film the image. However, ‘NAKiD’ can easily convert images from a single camera into a 3D image, greatly decreasing the problems in the film production process as well as its cost. There are 2 methods commonly used in the production of 3D stereoscopic images; filming using two cameras and the 3D conversion using computer software. The use of two cameras requires expensive equipment and the filmed images need further processing after production. On the other hand, 3D conversion technology does not require extra devices in the production process and can also convert the existing 2D contents into 3D, a main reason why many countries are focusing on the development of stereoscopic technology. Stereoscopic conversion is largely divided in to 3 steps; object separation, formation of depth information and stereo rendering. Professor Noh’s teams focused on the optimization of each step to increase the efficiency of the conversion system. Professor Noh’s research team first increased the separation accuracy to the degree of a single hair and created an algorithm that automatically fills in the background originally covered by the separated object. The team succeeded in the automatic formation of depth information using the geographic or architectural characteristic and vanishing points. For the stereo rendering process, the team decreased the rendering time by reusing the rendered information of one side, rather than the traditional method of rendering the left and right images separately. Professor Noh said that ‘although 3D TVs are becoming more and more commercialized, there are not enough programs that can be watched in 3D’ and that ‘stereoscopic conversion technology is receiving high praise in the field of graphics because it allows the easy production of 3D contents with small cost’.
2012.10.20
View 8945
Systems biology demystifies the resistance mechanism of targeted cancer medication
Korean researchers have found the fundamental resistance mechanism of the MEK inhibitor, a recently highlighted chemotherapy method, laying the foundation for future research on overcoming cancer drug resistance and improving cancer survival rates. This research is meaningful because it was conducted through systems biology, a fusion of IT and biotechnology. The research was conducted by Professor Gwang hyun Cho’s team from the Department of Biology at KAIST and was supported by the Ministry of Education, Science and Technology and the National Research Foundation of Korea. The research was published as the cover paper for the June edition of the Journal of Molecular Cell Biology (Title: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor). Targeted anticancer medication targets certain molecules in the signaling pathway of the tumor cell and not only has fewer side effects than pre-existing anticancer medication, but also has high clinical efficacy. The technology also allows the creation of personalized medication and has been widely praised by scientists worldwide. However, resistances to the targeted medication have often been found before or during the clinical stage, eventually causing the medications to fail to reach the drug development stage. Moreover, even if the drug is effective, the survival rate is low and the redevelopment rate is high. An active pathway in most tumor cells is the ERK (Extracellular signal-regulated kinases) signaling pathway. This pathway is especially important in the development of skin cancer or thyroid cancer, which are developed by the mutation of the BRAF gene inside the path. In these cases, the MEK (Extracellular signal-regulated kinases) inhibitor is an effective treatment because it targets the pathway itself. However, the built-up resistance to the inhibitor commonly leads to the redevelopment of cancer. Professor Cho’s research team used large scale computer simulations to analyze the fundamental resistance mechanism of the MEK inhibitor and used molecular cell biological experiments as well as bio-imaging* techniques to verify the results. * Bio-imaging: Checking biological phenomena at the cellular and molecular levels using imagery The research team used different mutational variables, which revealed that the use of the MEK inhibitor reduced the transmission of the ERK signal but led to the activation of another signaling pathway (the PI3K signaling pathway), reducing the effectiveness of the medication. Professor Cho’s team also found that this response originated from the complex interaction between the signaling matter as well as the feedback network structure, suggesting that the mix of the MEK inhibitor with other drugs could improve the effects of the targeted anticancer medication. Professor Cho stated that this research was the first of its kind to examine the drug resistivity against the MEK inhibitor at the systematic dimension and showed how the effects of drugs on the signaling pathways of cells could be predicted using computer simulation. It also showed how basic research on signaling networks can be applied to clinical drug use, successfully suggesting a new research platform on overcoming resistance to targeting medication using its fundamental mechanism.
2012.07.06
View 10458
Exhibition of Investment Demonstration on EEWS Research Held
- Five winners of business-planning project exhibition hold exhibition towards thirteen Angel Investors. Venture capital firm and industry investors are investing for themselves on the Green Growth Project of KAIST, which strives for solutions of global issues, such as; energy depletion, environment pollution and sustainable development. KAIST awarded the winner of "EEWS business-planning exhibition competition" and held investment demonstration exhibition. The exhibition is opened by the winners of the competition and held towards the firms and inventors encouraging capital on green business project and green technologies. The venture capital firms that participated in this exhibition were; Coolidge Corner Investment, Dae-Duk Investment Corp, KPM, Locus Capital Partners and Bo-Gwang Investment. The industry investors that participated were: Samsung C&T Corp, Cheil Industry, Dasan Networks, Hanhwa L&C, thirteen companies in total. The goal of EEWS Exhibition is to encourage the commercialization of research and development. It was co-hosted by DFJ Athena LLC and Ilshin ventures. The competition was divided into business planning section and business technology section. Grand prize on green growth went to Professor Joong-Myeon Bae who suggested "Eco-friendly hydrogen fuel cells", runner-up prize went to "Real-time measuring of NOx on Eco-friendly diesels" by Jin-Su Park, the technology director of CIOS. Grand prize of green technology went to "Highly-refractive, heat resisting hybrimer LED sack’ by Byung-Su Bae, professor of new material engineering, participation award went to ‘ITO-Free touch screen for smart phone’ by Min-yang Yang, professor of the department of Mechanical Engineering. A representative of KAIST said those of the firms and investors who have gone through commercialization showed interest on the creativity and the high level of the product. Jae-Kyu Lee, the head of EEWS who supervised the whole exhibition mentioned that, "EEWS Planning Group is consistently going to come up with innovative results” and that “Angel Investors showed enthusiasm. The representatives of Venture capital firm even considered participating as the jury of the competition in the future.” [Definition] EEWS stands for Energy depletion, Environment pollution, Water shortages and Sustainability, a project for the solution of such global issues promoted by KAIST.
2012.03.06
View 9367
A graduate-level education for working professionals in science programs and exhibitions will be available from mid-August this year.
The Graduate School of Culture Technology (GSCT), KAIST, has created a new course for professionals who purse their career in science programs and exhibitions, which will start on August 19 and continue through the end of November 2010. The course will be held at Digital Media City in Seoul. The course, also co-sponsored by National Science Museum, will offer students tuition-free opportunities to brush up their knowledge on the administration, policy, culture, technology, planning, contents development, and technology & design development, of science programs and exhibitions. Such subjects as science contents, interaction exhibitions, and utilization of new media will be studied and discussed during the course. Students will also have a class that is interactive, engaging, and visual, as well as provides hands-on learning activities. A total of 30 candidates will be chosen for the course. Eligible applicants are graduates with a B.S. degree in the relevant filed, science program designers and exhibitors, curators for science and engineering museums, and policy planners for public and private science development programs.
2010.08.12
View 10961
The 6th president of KAIST passed away on May 7, 2010.
Dr. Sang-Soo Lee was the first president of Korea Advanced Institute of Science (KAIS) and the 6th president of KAIST, who died of a chronic disease at the age of 85. The KAIS was the matrix of KAIST today. Graduated from the physics department of Seoul National University in 1949, he later received a doctoral degree in optics from Imperial College of Science and Technology, University of London. Dr. Lee has greatly contributed to the development of science and technology in Korea in the capacity of a policy administrator, educator, scientist, researcher, and engineer. He held numerous prestigious offices including President of Korea Atomic Energy Research Institute in 1967, of KAIS in 172, and of KAIST in 1989. Dr. Lee also worked as a professor at the physics department of KAIST for 20 years from 1972-1992. The Society of Photographic Instrumentation Engineers (SPIE), an international society for optics and photonics, was founded in 1955 to advance light-based technologies. Dr. Sang-Soo Lee was a member of the SPIE that issued a news release expressing its sincere condolences to his death. The following is the full text of the news release: http://spie.org/x40527.xml In memoriam: Sang Soo Lee 10 May 2010 Sang Soo Lee, known as the "Father of Optics" in Korea passed away on May 7, 2010, in Korea. He was 84. Lee received a B.S. in Physics from Seoul National University in Korea and a Ph.D. from Imperial College of Science and Technology, University of London, UK. Receiving the first Ph.D. in Optics in Korea, Dr. Lee devoted his life to lay the foundation for optical science and engineering for more than four decades as an educator, researcher, and administrator in science policy. "He was one of the architects of the extraordinary and rapid emergence of Korea as a world leader in science and technology, or perhaps with the rich history of contributions centuries ago, re-emergence would be more appropriate." said Eugene G. Arthurs, SPIE Executive Director. During his teaching career, Dr. Lee mentored 50 doctoral and more than 100 masters" degree candidates. in the areas of laser physics, wave optics, and quantum optics. Many of his former students have become leaders in academia, government-funded research institutes, and industry both in Korea and abroad. He published more than 250 technical papers and authored five textbooks, including "Wave Optics", "Geometrical Optics", "Quantum Optics", and "Laser Speckles and Holography". Lee was the first president of the Korea Advanced Institute of Science and Technology (KAIST), and the first president to establish a new government funded graduate school. He played a pivotal role in founding the Optical Society of Korea (OSK) in 1989 and served as its first president. Lee was an active member of the international scientific community. In addition to his pioneering scholastic achievements at KAIST, he served as the Vice President of the International Commission for Optics (ICO), a Council Member of the Third World Academy of Sciences, and a Council Member of UN University, serving as an ambassador for the optics community, which showed a significant example of how a developing country like Korea can serve international optics community. Dr. Lee was a Fellow of the International Society for Optical Engineering (SPIE), the Optical Society of America (OSA), and the Korean Physical Society (KPS). He was the recipient of many awards and honors, including the National Order of Civil Merit that is the Presidential Medal of Honor from the Republic of Korea (2000), the Songgok Academic Achievement Prize, the Presidential Award for Science, and the Medal of Honor for Distinguished Scientific Achievement in Korea. In 2006, he was awarded OSA"s Esther Hoffman Beller Medal.
2010.05.19
View 12740
Super-Fast Internet Data Chip Developed
A KAIST research team led by Prof. Kyoung-Hoon Yang of the Electrical Engineering & Computer Science Department developed a super-fast chip that could lead to huge advancements in broadband Internet technology, the Korean Ministry of Education, Science and Technology said on Thursday (June 26). The multiplexer chip is the first of its kind to be developed using the quantum effect of resonant tunnelling diode, according to the Ministry. The integrated circuit chip built at the university laboratory has an operating speed of 45 gigabits per second (Gb/s), while using roughly 75 percent less energy than the previous version. The speed enables the transfer of about 4 full-length movies in one second. The best operational broadband Internet services provide users with data transfer speed of 40 Gb/s, while most other high-speed online connections offer 10 Gb/s. "Besides speed, the greatest achievement is low energy use," Prof. Yang said. He stressed that energy use in chips is a crucial factor because power creates heat that can melt circuits and make them inoperable. "By cutting down on energy use, the new chips can be made smaller and with faster data transfer speed," the scientist said. He added that efforts are underway to increase operational speed to 100 Gb/s, with energy consumption to be cut to 10 percent of current chips like the high electron mobility transistor, the heterojunction bipolar transistor and the complementary metal oxide semiconductor. The researcher speculated that such revolutionary chips could be developed in 1-2 years and become the new benchmark in this field since existing chips have limited development capabilities. The project has received funding from the Education-Science-Technology Ministry since 2000. The Ministry"s financial support will last until 2010.
2008.06.26
View 12104
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3