본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
KI
by recently order
by view order
President Sung-Mo Steve Kang received an alumni award, PINNACLE, from his alma mater.
The following press release is provided by courtesy of Fairleigh Dickinson University:Teaneck, NJ (June 12, 2013) The FDU PINNACLE Society recognized the contributions and achievements of three distinguished alumni at a ceremony preceding the Charter Day reception and dinner on June 7, 2013. This year’s PINNACLE honorees are: Sung-Mo “Steve” Kang, BSEE’70, president, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Neil Koenig, BS’72, co-founder and managing partner, Imowitz Koenig & Co., LLP, New York City; and Robert Silberling, BA’69, special adviser to the CEO, T&M Protection Resources, LLC, New York City. The annual class of The PINNACLE is chosen by past inductees, based on the following criteria: success or distinction in one’s chosen field of endeavor, significant contributions to society and humanity through public or humanitarian service and outstanding service to the University or reflection of the unique character of FDU in one’s life.The PINNACLE was introduced by Fairleigh Dickinson University in 1989 to formally recognize and acknowledge the contributions and achievements of its most distinguished alumni. Today’s ceremony honors the newest members of what has become an ongoing organization for leading FDU alumni. Since its founding in 1942, the University has been committed to providing its students with the education, values and encouragement needed to become active and contributing members of the larger world community. More than 118,000 FDU alumni have gone on to enrich and improve society through their work, volunteer activities and personal actions. Among their ranks, a select few have achieved the highest possible level of performance — the pinnacle — in their respective pursuits. From left are PINNACLE inductees Sung-Mo “Steve” Kang, Neil Koenig, FDU President Sheldon Drucker and Robert Silberling. Photo Credit: Fairleigh Dickinson University
2013.06.14
View 7095
KAIST Department of Mechanical Engineering Ranked in 19th Place
- Ranked in 19th place in 2013 Quacquarelli Symonds (QS) World University Rankings by Engineering, Mechanical, Aeronautical and Manufacturing Subjects - KAIST ranked 19th in 2013 QS World University Rankings by Subject in Engineering, Mechanical, Aeronautical and Manufacturing Subjects. This is great progress compared to last year’s 51st-100th rank. The 2013 QS World University Rankings used four indicators, including academic reputation, employer reputation, citations per paper, and H-index citations, to assess 2,858 universities in the world, and evaluated up to 200th place in 30 academic subjects. KAIST earned high remarks from the H-index citations indicator, which is a new criteria introduced in the employer reputation rating. Moreover, the employer reputation section has risen sharply compared to the previous year. The H-index measures qualitatively and quantitatively the research outcomes of the researchers and assesses the number of papers written per professor and the average citation frequency of the papers. The proportions of the indicators differ by subjects. For the mechanical engineering field, they weigh 40%, 30%, 15%, and 15%, respectively. Rank Academic Employer Citations per paper H-index Citations Score 19 (51-100) 68.1 (78.9) 89.1 (60.2) 84.6 (83.1) 93.1 (N/A) 80.4 (74.6)
2013.06.10
View 7125
Neurotransmitter protein structure and operation principle identified
Professor Tae-Young Yoon - Real-time measurement of structural change of bio-membrane fusion protein - A new clue to degenerative brain diseases research KAIST Physics Department’s Professor Tae-Young Yoon has successfully identified the hidden structure and operation mechanism of the SNARE protein, which has a central role in transporting neurotransmitters between neurons, using magnetic nanotweezers. SNARE protein’s cell membrane fusion function is closely related to degenerative brain diseases or neurological disorders such as Alzheimer’s. Hence, this research may provide a clue to the disease’s prevention and treatment. Neurotransmission occurs when vesicles containing neurotransmitters fuse with cell membranes in neuron synapses. The SNARE protein is a cell-membrane fusion protein with a core role of releasing neurotransmitters. The academia speculated the SNARE protein would regulate the exchange of neurotransmitters, but its precise function and structure has been unknown. Professor Yoon’s research team developed an experimental technique using nanotweezers to measure physical changes to nanometer level by pulling and releasing each protein with force of 1 pN (piconewton). The research identified the existence of hidden SNARE protein"s intermediate structure. The process of withstanding and maintaining repulsive forces between bio-membranes in the hidden intermediate structure of SNARE to regulate the exchange of neurotransmitters has also been identified. Professor Yoon’s research team developed an experimental technique using magnetic nanotweezers to measure physical changes of proteins to nanometer level by pulling and releasing each protein with force of 1 pN. The research identified the existence of hidden SNARE protein"s intermediate structure and its formation. The process of withstanding and maintaining repulsive forces between bio-membranes in the hidden intermediate structure of SNARE to regulate the exchange of neurotransmitters has also been discovered. Professor Yoon said, “Ground breaking research results have been produced. A simple experimental technique of applying the smallest possible forces to proteins (with tweezers) to see their hidden structure and formation process can produce the same result as real observation has been developed.” He continued, “This technique will be very important in researching biological object with physical experimental technique. It will be a vital foundation to consilient research of different academia in the future.” This research was a joint project of Physics Department’s Professor Tae-Young Yoon, KAIST, and Biomedical Engineering Institute’s Professor Yeon-Kyun Shin at KIST. KAIST Physics Department’s Professor Yong-Hoon Cho, Ph.D. candidate Do-Yong Lee and KIAS Computational Sciences Department’s Professor Chang-Bong Hyun participated. The research was published on Nature Communications on April 16th. a) Neurotransmission occurs when vesicles containing neurotransmitters fuse with cell membranes in neuron synapses. A SNARE protein is a cell-membrane fusion protein with a core role of releasing neurotransmitters. b) A schematic diagram using magnetic nanotweezers to measure protein structure changes on molecular level. The nanotweezers exert an exquisite pull and release of each protein with a force of 1 pN to measure physical changes to nanometer level in real-time to observe the hidden intermediate structure and operation principles of bio-membrane fusion protein.
2013.05.25
View 8603
KAIST Alumni Association Selects 'Proud Alums'
KAIST Alumni Association selected ‘Proud Alums’ who have contributed to the development of Korea and society and brought honor to KAIST. The Alums selected were: CEO of Hyundai Heavy Industry Lee Jae Seong, Vice President of SK Hynix Park Sang Hoon, President of Samsung Display Kim Ki Nam, Director of Korea Research Institute of Standards and Science Kang Dae Lim, and President of Dawonsys Park Sun Soon. Lee Jae Song (Department of Industrial and Systems Engineering, M.S. 3rd) has led Hyundai Heavy Industries through innovation and had contributed in the development of Korea and oversaw the growth of Hyundai Heavy Industries to number 1 in Shipbuilding. Park Sang Hoon (Biological and Chemical Engineering, M.S. 5th) has led SK Hynix in the fields of energy, chemical and biological medicine and oversaw the development of world class R&D and production technologies to aid the development of Korea. Kim Ki Nam (Electrical and Electronic Engineering, M.S. 9th) has led the development of innovative semiconductor technologies thereby helping strengthening the competitiveness of Korean semiconductor industry. Kang Dae Lim (Mechanical Engineering, Ph.D. 1994 graduate) has helped in the development of Korean science and technology by leading the field of measurement standardization as Chairman of International Measurement Confederation and Chairman of Korea Association of Standards & Testing Organizations. Park Sun Soon (Electrical and Electronic Engineering, M.S. 12th) has succeeded in advancing the field of electronics by pioneering the field of creative technology.
2013.01.22
View 8819
Prof. Jang-Uk Choi develops Strong, Long-lasting Lithium-ion Battery
Lithium-ion secondary battery with high power, as well asmuch longer life span, has been developed using nanotechnology. Professor Jang-Uk Choi and his colleagues at KAIST University EEWS graduate school has succeeded in developing a new lithium-ion secondary battery that has more than five times the output and three times the life span of the conventional batteries. The industry expects the new battery to significantly improve the acceleration performance and solve the drawbacks of slow electric cars, which occurred due to failure of battery performance to keep up with the output of the motors during acceleration. It is also expected that the new battery could be utilized in various fields that require high power batteries such as Smart Grid, which is the next generation intelligent electrical grid, as well as electric tools and many others. Currently, the most widely used commercial lithium ion batteries’ lithium-cobalt-based cathode material has the disadvantage of expensive cost, high toxicity, short life expectancy and long-charge/discharge time. Also, it has been difficult to apply in electric cars that require a large current density and are vulnerable to heat generated during charging/discharging. On the other hand, Professor Choi and his colleagues’ lithium-manganese based cathode material is gaining popularity for having the advantages such as abundant raw materials, cheap prices, eco-friendliness and especially excellent high-temperature stability and high output, which are suitable for use as electrode material in electric cars. The pure lithium manganese based cathode material has a critical drawback of a very short life expectancy, only lasting about average of 1-2 years, which is due to the elution when the melted manganese flows out into the electrolyte. There have been various studies to solve this problem; however, the unique crystal structure of the material remained as a challenge for many scientists. Professor Choi’s team analyzed the structure of the crystal at the time shortly before manganese oxides were formed, while controlling the reaction temperature at the step of synthesizing nanomaterial. It has been found that, at 220℃, there are simultaneously existing two crystal faces, one that inhibits the dissolution of manganese ions and the other that enables lithium ions to move smoothly. Each of these crystal faces improves both the life span and output, increasing the output more than five times and life expectancy over three times. In addition, the existing high temperature life span, that was known to be especially vulnerable, has improved ten-fold. “By controlling the crystal face of lithium manganese anode material, which has previously existed in the battery as chunks of about 10 micro-meter particles, both output and life span has significantly improved,” said Professor Choi, “Domestic and international patent application for the regarding technology has been finished and we have plans to work with companies in the future for commercialization within 2-3 years.” Professor Yi Cui of Stanford University, the world’s leading scholar on the secondary battery, has evaluated that “This research exemplifies how nanotechnology can innovatively develop the field of secondary battery.” Meanwhile, the research led by Professor Jang-Uk Choi and participated by researcher Ju-Seong Kim has been published on the online edition (dated Nov 27th) of Nanoletters, the world’s leading authority on Nanoscience.
2012.12.21
View 8750
'KAIST ONE" program run by international students
International Students at KAIST are currently running the ‘KAIST ONE (Overseas Networking Exchange)’ program which promotes cultural exchange with other students. The program started in 2007 at ICU and continues on as the ‘KAIST ONE’ event, after the school was integrated into KAIST. Students from over 40 different nationalities have participated in the program and an average of 150 students participates in each event. The ‘KAIST ONE’ event is held every other Thursday at the KAIST international center from 7 to 9pm. Columbian and Saudi Arabian students hosted the event in October and November respectively and displayed their traditional culture and food. Students from Denmark, Uganda and Cameroon will host the event on November 15th, 19th and on December 6th respectively. Since last year, the event has received great interest from many different embassies, with foreign ambassadors participating in the events. Karim Charfi (Tunisia, Junior at the Department of Electrical Engineering), who planned the event, said that “KAIST ONE is a great opportunity to introduce foreign to other students” and that “it has become a unique event that can only be experienced at KAIST”. Anyone can participate in the program, from KAIST students to outsiders.
2012.11.22
View 8144
3rd EEWS CEO Forum Held
KAIST EEWS (Energy Environment Water and Sustainability) held the 3rd EEWS CEO Forum at KAIST Seoul Campus. EEWS is a research/education project initiated by KAIST to solve the global issues that the world faces including issues such as: energy depletion, global warming, water shortage, and sustainable development. The 3rd EEWS CEO Forum is dedicated to providing the opportunity to share the vision and experience on technology and policy for green growth. The forum was founded in 2011 with active participation from Woo Ki Jeong (Director of Statistics), Choi Kwang Sik (Korea City Airport, Logistics and Travel, CEO), Kang Young Joong (Daekyo Group, CEO), Yoo Kyung Sun (Eugene Group, CEO), all experts in the field of green growth. The forum consisted of presentations and debate on topics such as: international outlook on green growth, development projects based on new renewable energy, battery of electric vehicles, and development of solar cells. Kim Sang Hyup member of the Presidential Committee on Green Growth started off the series of lectures with the topic of ‘International Outlook on Green Growth’. Kim Joong Gyum CEO of KEPCO followed up with ‘the Future of Electricity Generation Industry and Renewable Energy’, Kim Soo Ryung Director of LG Chemicals gave a talk on ‘Electric Vehicles and the Future of the Battery Industry’, and finally Choi Gi Hyuk CEO of SDN Ltd. gave the final lecture on ‘the Inflection Point of Solar Cell Industry’.
2012.10.16
View 9002
KAIST 63rd in 2012 QS World University Ranking
KAIST was ranked 63rd in the 2012 World University Ranking conducted by British University Ranking Institution Quacquarelli Symonds. The result is an all-time high for KAIST and a quantum leap of 135 places from 198th in 2006. The criteria are: Student Evaluation (40%), Industry Evaluation (10%), Dissertation Citation per Professor (20%), Professor to Student Ratio (20%), Ratio of Foreign Students (5%), and Professor Ratio (5%). The most notable improvement was in the ‘Academic Reputation’ criteria where KAIST scored 85.1 points and recorded 68th in the world, an improvement of 17 places from last year. The Engineering College was ranked 24th, Natural Science College was ranked 48th, Biological Science College was ranked 110th, demonstrating that KAIST has now been established as a world class research oriented university. The 2012 QS World University Ranking ranked MIT as the best university in the world followed by Cambridge, Harvard, ULC, and Oxford. Domestically Seoul National University was ranked highest at 37th followed by KAIST (63rd), POSTECH (97th), Yonsei University (112th), Korea University (137th), and Sungkyunkwan University (179th) in the top 200 places.
2012.09.22
View 9070
Professor Song Joon Hwa develops new Location Tracking Application
Professor Song Joon Hwa developed a location tracking application that alerts the teacher when students on field trips stray too far from the group via a smartphone and a headset. Conventional Location Tracking Applications utilize GPS systems and as a consequence does not function indoors where the satellite signal is nonexistent. However Professor Song’s method is unique in the fact that it utilizes radio waves which allows signal transfer both indoors and outdoors. In addition different alerts are given off in difference locations and therefore the technology can be applied in finding the effectiveness of the field trip and the social behaviors of students.
2012.09.11
View 7574
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 14180
Systems biology demystifies the resistance mechanism of targeted cancer medication
Korean researchers have found the fundamental resistance mechanism of the MEK inhibitor, a recently highlighted chemotherapy method, laying the foundation for future research on overcoming cancer drug resistance and improving cancer survival rates. This research is meaningful because it was conducted through systems biology, a fusion of IT and biotechnology. The research was conducted by Professor Gwang hyun Cho’s team from the Department of Biology at KAIST and was supported by the Ministry of Education, Science and Technology and the National Research Foundation of Korea. The research was published as the cover paper for the June edition of the Journal of Molecular Cell Biology (Title: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor). Targeted anticancer medication targets certain molecules in the signaling pathway of the tumor cell and not only has fewer side effects than pre-existing anticancer medication, but also has high clinical efficacy. The technology also allows the creation of personalized medication and has been widely praised by scientists worldwide. However, resistances to the targeted medication have often been found before or during the clinical stage, eventually causing the medications to fail to reach the drug development stage. Moreover, even if the drug is effective, the survival rate is low and the redevelopment rate is high. An active pathway in most tumor cells is the ERK (Extracellular signal-regulated kinases) signaling pathway. This pathway is especially important in the development of skin cancer or thyroid cancer, which are developed by the mutation of the BRAF gene inside the path. In these cases, the MEK (Extracellular signal-regulated kinases) inhibitor is an effective treatment because it targets the pathway itself. However, the built-up resistance to the inhibitor commonly leads to the redevelopment of cancer. Professor Cho’s research team used large scale computer simulations to analyze the fundamental resistance mechanism of the MEK inhibitor and used molecular cell biological experiments as well as bio-imaging* techniques to verify the results. * Bio-imaging: Checking biological phenomena at the cellular and molecular levels using imagery The research team used different mutational variables, which revealed that the use of the MEK inhibitor reduced the transmission of the ERK signal but led to the activation of another signaling pathway (the PI3K signaling pathway), reducing the effectiveness of the medication. Professor Cho’s team also found that this response originated from the complex interaction between the signaling matter as well as the feedback network structure, suggesting that the mix of the MEK inhibitor with other drugs could improve the effects of the targeted anticancer medication. Professor Cho stated that this research was the first of its kind to examine the drug resistivity against the MEK inhibitor at the systematic dimension and showed how the effects of drugs on the signaling pathways of cells could be predicted using computer simulation. It also showed how basic research on signaling networks can be applied to clinical drug use, successfully suggesting a new research platform on overcoming resistance to targeting medication using its fundamental mechanism.
2012.07.06
View 10488
New concept 'mole game' robot developed
A new game robot concept developed by KAIST researchers came in first place at a world-renowned virtual reality exhibition, despite being the first ever entry by a Korean team. Professor Lee Woohun’s team from the Department of Industrial Design at KAIST won the first-place award of ‘Gran Prix du Jury’ at the famous virtual reality exhibition, Laval Virtual 2012, which was held between March 28th and April 1st, with the mole game robot, ‘MoleBot’. MoleBot can be enjoyed in a completely physical environment unlike other virtual reality games and allows interaction between the virtual world and reality. Such imaginative interaction attracted numerous spectators during the exhibition. The MoleBot table consists of approximately 15,000 small cubes, and as the object inside the table moves, the cubes slide as if a mole is inside. By using a joystick, users can enjoy physical interaction with the table and a wide range of games. The MoleBot can also be operated with hand gestures using ‘Kinect’, a motion sensing input device developed by Microsoft, making it possible to enjoy games as if playing with a pet. Professor Lee’s team came up with the project from a simple idea: ‘What if moles lived inside the table?’ The team first created a table that would hold and allow the movement of the cubes, and then placed a plastic mold underneath it with a layer of spandex in between to lessen the friction, allowing smooth and lifelike movement. The mold contains magnets that allow the accurate delivery of mechanical movement. After two years of continued additional research, MoleBot was released to the world. In the acceptance speech, Professor Lee said, ‘It is rare for a design team to win first place in an engineering exhibition’ and that ‘to achieve such a feat, the MoleBot’s technological creativity and artistic completeness became one’. Professor Lee also said that ‘this concept of creating an interactive world on a table could potentially become a new game interface’ and that he would research on applying this MoleBot technology to different fields such as human-computer interaction, architecture, interior, and clothing. Laval Virtual is a world-renowned exhibition that displays cutting edge technologies in the field of virtual reality. This year was the 14th exhibit, and over 10,000 people participated in it. The exhibition gives out 12 awards, one per field, and Professor Lee’s team won the highest award.
2012.05.07
View 10722
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 24