본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
Professor Lee Jae Kyu : Appointed Fellow at Association of Information Systems
Professor Lee Jae Kyu of the Graduate School of Information Media Management was made Fellow of the Association of Information Systems. Professor Less was the Chief Editor of Electronic Commerce Research and Applications, Chairman of Asia Pacific Information System Symposium, and Chairman of Korea Academy of Management Information, in addition to Chairman of the Academy of Korea Intelligence Information System. The ‘Electronic Commerce’ co-written by Professor Lee is being used as primary MBA textbook in many universities around the world. Homepage : http://www.business.kaist.ac.kr/faculty/jklee/
2012.01.31
View 8461
Closer to the Dream: Graphene
A technique that allows easy and larger observation area of graphene’s crystal face was developed by Korean Research Team. The research team, led by Professor Jeong Hui Tae (KAIST), consists of Doctorate candidate Kim Dae Woo, Dr. Kim Yoon Ho (primary author), Doctorate candidate Jeong Hyun Soo. The research is supported by WCU (World Class Research University) Development Plan, Mid-Aged Researcher Support Business and was published in the online edition of Nature Nanotechnology. (Dissertation: Direct visualization of large0area graphene domains and boundaries by optical birefringency) Professor Jeong’s team used the optical property of the liquid display used in LCD to visualize the size and shape of the single crystals along a flat surface. The visualization of the single crystal allowed the measurement of a near theoretical value of electrical conductivity of graphene. Graphene has great electrical conductivity, transparent, mechanically stable, flexible, and is therefore regarded as the next generation electrical material. However the polycrystalinity of graphene meant that the actual electrical, mechanical properties were lower than the theoretical values. The reason was thought to be because of the size of the crystal faces and boundary structures. Therefore, in order to create graphene that has good properties, observing the domain and boundary of graphene crystal faces is essential. The new technique developed by the research team is another step towards commercializing transparent electrodes, flexible display, and electric materials like solar cells.
2012.01.31
View 9531
MOU: KAIST-Korea Internet & Security Agency
KAIST signed a MOU with the Korea Internet & Security Agency for the development of IT and International Security. As a result of the MOU interaction in ▲Exchange of personnel and materials for cooperative research for information protection ▲Information protection policy and technology ▲Education and training for developing information protection personnel, will be increased. Director of Cyber Security Research Center Joo Dae Joon commented, “Cyber-attack on national infrastructure like DDOS attacks can threaten the nation’s system” and that “the two institutes will establish a response system against cyber-attacks and train experts in information protection”.
2012.01.31
View 6904
Professor Moon Song Chun Appointed by 'Korean Red Cross
The Korean Red Cross appointed KAIST’s Professor Moon Song Chun (Graduate School of Techno Management). Professor Moon participated in education and support services over the past 20 years like UNDP Expert, KOICA International Service Expert, Y2K Korea Representative (visit 20 third world countries around the world). Professor Moon will start participation in Korean Red Cross in various parts of North Korea and for a period of two years.
2012.01.31
View 7977
City of McAllen, Texas Adopts OLEV Technology
KAIST will be exporting the OLEV technology to the United States for the first time since its development. The city of McAllen of Texas will be stationing 3 OLEV buses in the 10 mile (16km) route from 2013 from OLEV Technology Corporation. The OLEV Technology Corporation based in Massachusetts and is a venture company that KAIST has 30% share of and has the OLEV technology. The corporation has sole license in commercialization of OLEV in the United States. The OLEV technology has been commercialized in the city of Seoul since July of 2011. But this is the first instance of foreign implementation of the OLEV technology. The reason for the city of McAllen adopting the OLEV is because of the support of the Department of Transportation. The Department of Transportation has been supporting Green Energy Research and Future Transportation Technology Development projects since 2009. A total of 266 research proposals were submitted in 2011 and out of that 46 were selected and given a total of 112 million USD. Representative of McAllen city commented “the operation of OLEV buses developed by KAIST will result in decrease in energy consumption and emission of greenhouse gases. The OLEV technology can be applied to existing diesel buses and therefore has high cost efficiency”.
2012.01.31
View 7053
Director of ELK Shin Dong Hyuk Donates 500 million Korean Won over 5 years
KAIST Alumni Director of ELK Shin Dong Hyuk Promised to donate 100million Korean Won annually for 5 years. Director Shin commented revealed his reason for donating was, “I had received a lot of help from KAIST as a KAIST alumni and was therefore wondering what I could do to help out.” And that “I wish that the donation can help KAIST students who are experiencing financial difficulty”. He added that, “I wish that the donation becomes the basis on which KAIST students can achieve their dreams and also KAIST students contribute back to KAIST after graduation”. The ELK ltd. where Alum Shin Dong Hyuk is Director at is located in the DaeDuk Techno Valley and is one of the leading touch screen panel specialization companies. It has world’s best technological asset in smartphone touch screen panel production and is responsible for supplying panels for Motorola and LG Electronics, etc.
2012.01.31
View 6791
Bio Pharmaceutical Business Center: Now Open
The Signboard Hanging Ceremony for the Bio Pharmaceutical Business Center for the Integrated Research for the field of Bio Pharmaceutics. 150 representatives from various bio pharmaceutics related businesses and institutes were present for this ceremony. The Ministry of Education, Science and Technology placed the Molecular Process research team, Personalized Drug Delivery Medium research team, and the newly formed Cancer Cell Detection using Blood research team at the Bio Pharmaceutical Business Center at KAIST.
2012.01.31
View 7940
KAIST to Support R&D Plans of Mid-Small Sized Enterprises
KAIST signed a MOU for the ‘Support for R&D Plans for Mid-Small Sized Firms’ with the Small and Medium Business Conference and Korea South-East Power Co. Ltd. KAIST and Korea South-East Power Co. Ltd. will now be improving their cooperation on supporting R&D plans to help the technology development and commercialization for Small and Medium Businesses. Korea South-East Power Co. Ltd. will now select 20 best qualified firms out of its 300 cooperating firms and suggest them as candidates to KAIST Business membership System. The suggested firms will be given: ▲Strategy R&D Planning ▲Consult Difficult Technology ▲Provide Information on Research Labs and Researchers among other various programs. The firms participating in the KAIST Business membership System will be able to minimize risk and increase its possibility for success on Development Technology. KAIST Business membership System is a program provided to firms for a membership fee, in order to create technological innovation and strengthen cooperation between university and industry.
2012.01.31
View 8388
KAIST Ocean Technology Center
The KAIST Ocean Technology Center was established and opened in Eureka hall. The founding Center Director was given to Professor Han Soon Heung (department of Marine System and Engineering). The newly found Center will be under the KAIST Mechanical Technology Research Center and will be actively developing ideas like deep sea marine plant, impact resistance to underwater explosion, and etc. and work to commercialize these technologies and contribute to the development of the Shipbuilding industry.
2012.01.31
View 7713
A Step Closer to Ultra Slim Mobile Phone
Professor Baek Kyung Wook (department of Material Science and Engineering) succeeded in developing an ultra-thin conjugation technique that can perfectly replace the modular contact in electronic devices. The research team developed a compound material using ultra-fine solder-adhesive film and developed the vertical ultrasonic conjugation process thereby making a reliable utra-thin conjugation. The developed technique allowed for very thin and reliable conjugation and will be able to replace the socket type connector and is expected to revolutionize the electronic device industry. In mobile electronic devices like the smartphone, the trend is to incorporate various functional modules like camera, display, touchscreens, etc. in addition to striving for miniaturization of the device. Recently the problem was the fact that the number of modules within the device was increasing due to the incorporation of various functions, and consequently the volume that these modules took up increased as well, which made miniaturization almost impossible. Professor Baek‘s team succeeded in improving upon this problem by creating a compound material that has ultra-fine solder particles that can melt to form alloy fusion with the electrode and thermosetting adhesive film that can wrap around the electrode and provide mechanical protection. The use of this material made it possible to reduce the thickness of the connector by hundredth fold which improved electrical, mechanical properties and highly reliable. From a processing standpoint the conventional conjugation process involved heating the mechanical block and was therefore hard to manage its production and also consumed 1000W and took up to 15 seconds. By contrast, Professor Baek’s team’s new process uses only ultrasound to locally heat and melt the conjugation point itself thereby reducing power consumption to 100W and conjugation time to 1~5 seconds. The technique developed by Professor Baek and Lee Ki Won Doctorate student was awarded Excellent Dissertation Award by world famous journals like the Electronic Components and Technology Conference and is being recognized worldwide.
2012.01.31
View 8803
Kaist expresses appreciation to a Swedish nurse served in the Korean War and donated a scholarship.
Public release date: 19-Dec-2011 [ Print | E-mail | Share ] [ Close Window ] Contact: Lan Yoon hlyoon@kaist.ac.kr 82-423-502-295 The Korea Advanced Institute of Science and Technology (KAIST) Kaist expresses appreciation to a Swedish nurse served in the Korean War and donated a scholarship The largest private donation ever given to KTH Royal Institute of Technology in Stockholm, Sweden, will include a scholarship for KAIST students to study there The largest private donation ever given to KTH Royal Institute of Technology in Stockholm, Sweden, will include a scholarship for KAIST students to study there. "I"ve never forgotten the tragedy of the Korean War that I witnessed as a nurse, even today, more than 60 years later. I"m glad to contribute to a wider cooperation in science and technology between Sweden and Korea," said the donor. Daejeon, Republic of Korea, December 19, 2011— On Monday, December 19th, 2011 at 4:00 pm (Central European Time), at KTH Royal Institute of Technology (KTH) in Stockholm, KAIST (Korea Advanced Institute of Science and Technology) presented a plaque of appreciation to a Swedish couple, Rune and Kerstin Jonasson, whose generous donation will establish a scholarship fund for KAIST students. In late June of 2011, the Jonassons donated 70 million Krona ($10 million USD) to KTH, the largest lump sum donation ever given to the university by an individual, and the couple requested that a portion of the money be used to promote academic interaction and collaboration with Korean universities. KTH had various student exchange programs with KAIST, and with the financial support from the Jonassons, the two universities have decided to invite KAIST students to study at KTH. Enjoying a long tradition of excellence in higher education in Asia and Northern Europe, KAIST and KTH have continued to lead the development of science and technology through top-notch educational programs, dynamic research experiences, technological innovation, and highly skilled and motivated manpower. The two global research universities expect that the scholarship program will add another dimension to already expanding exchanges. Kerstin Jonasson, 88 years old, came to Korea in 1951 when she was 28, and served a six-month tour of duty as a nurse in the Korean War. Recalling her past, Mrs. Jonasson said, "The calamity of the war remains deeply engraved in my mind." Ever since returning from the battlefield, she has been seeking ways to help Korea, and has thus been regularly involved in volunteer activities to strengthen bilateral relations between Korea and Sweden. Chang-Dong Yoo, Associate Vice President of Special Projects & Institutional Relations at KAIST, thanked the couple while presenting them with the award on behalf of KAIST family including President Nam-Pyo Suh. "We feel greatly indebted to the Jonassons, most particularly to Kerstin Jonasson, who came to Korea during the toughest time in our modern history and rendered generous humanitarian assistance to Koreans. Not only that, Mrs. Jonasson has continued to play an important role, up to today, as a "Goodwill Ambassador for Korea" in bringing the two countries closer than ever. This scholarship will provide our students with excellent opportunities to study in Sweden, the home of many great scientists, as well as to experience the robust and vibrant Nordic culture." In response, Kerstin Jonasson said: "I"m grateful to the Korean people who, over the past 60 years, have consistently expressed their appreciation for my work during the Korean War, and I"m really proud of the fact that they"ve made Korea a great country, reemerging from the destitution of the war as an important power of democracy and economy in the world. My husband and I hope that our donation will further enhance the strong ties forged between Sweden and Korea, and that KTH and KAIST will become the centerpiece of a mutually beneficial relationship between the two countries through the advancement of science and technology." The details of the scholarship have yet to be finalized, but the fund is expected to be approximately 10 to 15 million Krona ($1.4~$2.1 million USD) to be spread out over five years. KAIST aims to begin sending students to KTH in the fall of 2012, and will select 10~12 graduate students for the exchange program. Since 1990, 38 KAIST students have studied at KTH, and 50 KTH students have studied at KAIST. ###
2011.12.23
View 8859
Ten Breakthroughs of the Year 2011 by Science
Porous Zeolite Crytals Science, an internationally renowned scientific journal based in the US, has recently released a special issue of “Breakthrough of the Year, 2011,” dated December 23, 2011. In the issue, the journal introduces ten most important research breakthroughs made this year, and Professor Ryong Ryoo, Department of Chemistry at KAIST, was one of the scientists behind such notable advancements in 2011. Professor Ryoo has been highly regarded internationally for his research on the development of synthetic version of zeolites, a family of porous minerals that is widely used for products such as laundry detergents, cat litters, etc. Below is the article from Science, stating the zeolite research: For Science’s “Breakthrough of the Year, 2011”, please go to: http://www.sciencemag.org/site/special/btoy2011/ [Excerpt from the December 23, 2011 Issue of Science] Industrial Molecules, Tailor-Made If you ever doubt that chemistry is still a creative endeavor, just look at zeolites. This family of porous minerals was first discovered in 1756. They"re formed from different arrangements of aluminum, silicon, and oxygen atoms that crystallize into holey structures pocked with a perfect arrangement of pores. Over the past 250 years, 40 natural zeolites have been discovered, and chemists have chipped in roughly 150 more synthetic versions. View larger version: In this page In a new window Assembly required. Porous zeolite crystals are widely used as filters and catalysts. This year, researchers found new ways to tailor the size of their pores and create thinner, cheaper membranes. CREDIT: K. VAROON ET AL., SCIENCE334, 6052 (7 OCTOBER 2001) This abundance isn"t just for show. Three million tons of zeolites are produced every year for use in laundry detergents, cat litter, and many other products. But zeolites really strut their stuff in two uses: as catalysts and molecular sieves. Oil refineries use zeolite catalysts to break down long hydrocarbon chains in oil into the shorter, volatile hydrocarbons in gasoline. And the minerals" small, regularly arranged pores make them ideal filters for purifying everything from the air on spaceships to the contaminated water around the nuclear reactors destroyed earlier this year in Fukushima, Japan. Zeolites have their limitations, though. Their pores are almost universally tiny, making it tough to use them as catalysts for large molecules. And they"re difficult to form into ultrathin membranes, which researchers would like to do to enable cheaper separations. But progress by numerous teams on zeolite synthesis this year gave this “mature” area of chemistry new life. Researchers in South Korea crafted a family of zeolites in which the usual network of small pores is surrounded by walls holed with larger voids. That combination of large and small pores should lead to catalysts for numerous large organic molecules. Labs in Spain and China produced related large- and small-pore zeolites by using a combination of inorganic and organic materials to guide the structures as they formed. Meanwhile, researchers in France and Germany discovered that, by carefully controlling growth conditions, they could form a large-pore zeolite without the need for the expensive organic compounds typically used to guide their architecture as they grow. The advance opens the way for cheaper catalysts. In yet another lab, researchers in Minnesota came up with a new route for making ultrathin zeolite membranes, which are likely to be useful as a wide variety of chemically selective filters. This surge of molecular wizardry provides a vivid reminder that the creativity of chemists keeps their field ever young. Related References and Web Sites
2011.12.23
View 11339
<<
첫번째페이지
<
이전 페이지
131
132
133
134
135
136
137
138
139
140
>
다음 페이지
>>
마지막 페이지 176