본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.28
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
RNA
by recently order
by view order
2013 International Conference for the Integration of Science, Technology, and Society at KAIST (ICISTS-KAIST)
The International Conference for the Integration of Science, Technology, and Society at KAIST (ICISTS-KAIST) is a global forum organized by KAIST undergraduate students to promote the exchange of ideas and facilitate the discussion of issues that are important to science, technology, society, and higher education. The ICISTS-KAIST conference has been held annually every summer since 2005, inviting distinguished speakers and guests from all around the world to share their insights and expertise with students gathered from Korea and abroad. Last year alone, more than 300 students from 22 nations and 40 speakers participated in the event. Originally, the ICISTS-KAIST was established by KAIST students who were inspired by the Harvard Project for Asian and International Relations (HPAIR), which is one of the Harvard’s largest annual student conferences in Asia. This year, 335 students from 103 universities in 22 countries joined the conference that was held on August 5th-9th in Daejeon, making the 2013 ICISTS-KAIST the biggest science and engineering gathering hosted by university students in Asia. About 36% of the participants were international students. The theme of the conference was “Perfect Alliance: Coexistence for Human Society,” in which students and speakers addressed issues on how to harmonize the speed of scientific progress with the development of important values in society, as well as to explore solutions to overcome the chasm, if any, between the boundaries of science and society. In his opening remarks, President Steve Kang said, “Creativity and innovation are born out of openness. Therefore, it is essential for young scientists and engineers to communicate with people from different cultural and political backgrounds. Through this kind of global interaction and exchange of ideas and views, students will have an opportunity to deepen their understanding of the world and to better examine the purpose of their intellectual exploration in science and technology.” At the 2013 ICISTS-KAIST, 25 distinguished speakers participated including Walter Bender, a former director of the Media Lab at MIT and David Christian, a professor of Macquarie University in Australia.
2013.08.08
View 11888
A magnetic pen for smartphones adds another level of conveniences
Utilizing existing features on smartphones, the MagPen provides users with a compatible and simple input tool regardless of the type of phones they are using. A doctoral candidate at the Korea Advanced Institute of Science and Technology (KAIST) developed a magnetically driven pen interface that works both on and around mobile devices. This interface, called the MagPen, can be used for any type of smartphones and tablet computers so long as they have magnetometers embedded in. Advised by Professor Kwang-yun Wohn of the Graduate School of Culture Technology (GSCT) at KAIST, Sungjae Hwang, a Ph.D. student, created the MagPen in collaboration with Myung-Wook Ahn, a master"s student at the GSCT of KAIST, and Andrea Bianchi, a professor at Sungkyunkwan University. Almost all mobile devices today provide location-based services, and magnetometers are incorporated in the integrated circuits of smartphones or tablet PCs, functioning as compasses. Taking advantage of built-in magnetometers, Hwang"s team came up with a technology that enabled an input tool for mobile devices such as a capacitive stylus pen to interact more sensitively and effectively with the devices" touch screen. Text and command entered by a stylus pen are expressed better on the screen of mobile devices than those done by human fingers. The MagPen utilizes magnetometers equipped with smartphones, thus there is no need to build an additional sensing panel for a touchscreen as well as circuits, communication modules, or batteries for the pen. With an application installed on smartphones, it senses and analyzes the magnetic field produced by a permanent magnet embedded in a standard capacitive stylus pen. Sungjae Hwang said, "Our technology is eco-friendly and very affordable because we are able to improve the expressiveness of the stylus pen without requiring additional hardware beyond those already installed on the current mobile devices. The technology allows smartphone users to enjoy added convenience while no wastes generated." The MagPen detects the direction at which a stylus pen is pointing; selects colors by dragging the pen across smartphone bezel; identifies pens with different magnetic properties; recognizes pen-spinning gestures; and estimates the finger pressure applied to the pen. Notably, with its spinning motion, the MagPen expands the scope of input gestures recognized by a stylus pen beyond its existing vocabularies of gestures and techniques such as titling, hovering, and varying pressures. The tip of the pen switches from a pointer to an eraser and vice versa when spinning. Or, it can choose the thickness of the lines drawn on a screen by spinning. "It"s quite remarkable to see that the MagPen can understand spinning motion. It"s like the pen changes its living environment from two dimensions to three dimensions. This is the most creative characteristic of our technology," added Sungjae Hwang. Hwang"s initial research result was first presented at the International Conference on Intelligent User Interfaces organized by the Association for Computing Machinery and held on March 19-22 in Santa Monica, the US. In the next month of August, the research team will present a paper on the MagPen technology, entitled "MagPen: Magnetically Driven Pen Interaction On and Around Conventional Smartphones" and receive an Honorable Mention Award at the 15th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2013) to be held in Germany. In addition to the MagPen, Hwang and his team are conducting other projects to develop different types of magnetic gadgets (collectively called "MagGetz") that include the Magnetic Marionette, a magnetic cover for a smartphone, which offers augmented interactions with the phone, as well as magnetic widgets such as buttons and toggle interface. Hwang has filed ten patents for the MagGetz technology. Youtube Links: http://www.youtube.com/watch?v=NkPo2las7wc, http://www.youtube.com/watch?v=J9GtgyzoZmM
2013.07.25
View 12780
Prof. Song Chong received the IEEE William R. Bennett Prize Paper Award
The IEEE (Institute of Electrical and Electronics Engineers) Communications Society (ComSoc), a renowned global network of professionals with a common interest in advancing communications technologies, has announced the winner of the 2013 William R. Bennett Prize in the field of communications networking. The prize was given to a Korean research team led by Song Chong, Professor of Electrical Engineering at KAIST and Injong Rhee, Professor of Computer Science at North Carolina State University. In addition, Dr. Minsu Shin, Dr. Seongik Hong, and Dr. Seong Joon Kim of Samsung Electronics Co., Ltd. as well as Professor Kyunghan Lee from Ulsan National Institute of Science and Technology were recognized for their contribution. The William R. Bennett Prize for communications networking has been awarded each year since 1994 in recognition of the best paper published in any journal financially sponsored or co-sponsored by ComSoc in the previous three calendar years. Only one paper per year is selected based on its quality, originality, scientific citation index, and peer reviews. Among the previous award winners are Robert Gallager of MIT, and Steven Low of the California Institute of Technology, and Kang G. Shin of the University of Michigan. The Korean research team’s paper, On the Levy-Walk Nature of Human Mobility, was published in the June 2011 issue of IEEE/ACM Transactions on Networking, a bimonthly journal co-sponsored by the IEEE ComSoc, the IEEE Computer Society, and the Association for Computing Machinery (ACM) with its Special Interest Group on Data Communications (SIGCOMM). In the paper, the research team proposed a new statistical model to effectively analyze the pattern of individual human mobility in daily life. The team handed out GPS (global positioning system) devices to 100 participants residing in five different university campuses in Korea and the US and collected data on their movements for 226 days. The mobility pattern obtained from the experiment predicted accurately how the participants actually moved around during their routines. Since publication, the paper has been cited by other papers approximately 350 times. The team’s research results will apply to many fields such as the prevention and control of epidemics, the design of efficient communications networks, and the development of urban and transportation system. The research team received the award on June 10th at the 2013 IEEE International Conference on Communications (ICC) held in Budapest, Hungary, from June 9-13, 2013. Professor Song Chong
2013.07.06
View 15608
Foreign graduates donate to development fund for six years
International graduates of the Global IT Technology Graduate School at KAIST have continued a tradition of giving something back to their alma mater. On May 10th, President Steve Kang held a donation ceremony with 12 donors. Started in 2008, the graduates, mostly consisted of government officials from developing countries, have raised a development fund for KAIST, and in the past six years, a total of 81 graduates donated USD 10,000. “KAIST provided me with an excellent education and research environment during my studies. I’m glad that I can have an opportunity to help my juniors and the university,” said Naryn Kenzhaliyev of Kazakhstan, a graduate present at the ceremony. “Every year, these students voluntarily give when they are about to graduate. We feel proud and greatly appreciated for their philanthropic efforts,” said Professor Jae-Jung Noh, responsible for the global IT technology graduate program. Established in 2006, the Global IT Technology Graduate School has attracted IT specialists from Korea and abroad, offering master’s and doctoral degrees. The school has invited many public servants in developing countries whose expertise lies in IT technology.
2013.07.04
View 7051
International Student Conference (ICISTS-KAIST) to be Held in August
- 300 participants including university students worldwide and renowned speakers expected to gather - Ideal coexistence of science & technology and society explored under the theme of “Perfect Alliance” Science & technology and society are at the core of 21st century’s development. ICISTS-KAIST 2013, international conference for university students, seeks ways for the two to coexist harmoniously and is to be held from August 5 to 9 on KAIST campus as well as at Daejeon Convention Center. ICISTS stands for International Conference for the Integration of Science, Technology and Society. ICISTS-KAIST is a non-profit organization run by KAIST students who are directly engaged in the coordination, planning, finance, public relations, and management of this academic event. The upcoming ninth annual event of ICISTS (www.icists.org) 2013 is centered around the theme, “Perfect Alliance: Coexistence for Human Society.” The conference will last for four nights and five days; scholars and students across various academic backgrounds gather to narrow the gap between fields of study and discuss possible solutions to the problems in today’s society. The annual conference, ICISTS-KAIST attracts hundreds of participants from all over the world to KAIST, Daejeon and its most recent event last year witnessed discussions among some 300 students from 22 countries hearing the lectures from 40 academics and scholars. This year’s event will welcome the 16-year old inventor, scientist, and cancer researcher Jack Thomas Andraka, the founder of the “One Laptop Per Child” project Walter Bender, Chemistry Nobel Prize laureate Harold Walter Kroto, and many more. The application period for ICISTS-KAIST 2013 runs from May 20 to July 12, and applications are received through the website at www.icists.org. ICISTS-KAIST 2013 Promgram Summary Event Title: International Conference for the Integration of Science, Technology and Society 2013 (ICISTS-KAIST 2013) Theme: Perfect Alliance: Coexistence for Human Society Date and Venue: 2013 Aug. 5 (Mon.) ~ Aug. 9 (Fri.), KAIST Campus and Daejeon Convention Center Host and Organizer: ICISTS KAIST Sponsor: Korean National Commission for UNESCO, Korea Tourism Organization, Korea Ministry of Education, Science & Technology, KOFST Session Description: Keynote Speech - Keynote address on fundamental approach to coexistence Parallel Session - Multiple simultaneous lecture of delegates’ choice Group Discussion - Small group discussions among delegates and speakers Panel Discussion - In-depth and thought-revealing discussion among speakers Experience Session - First-person experience on relevant technology Team Project & Poster Fair - Team mission, poster exhibition and evaluation Subtopics: - New Values from Coexistence of Science & Technology and Society - Synergetic Resolution via Coexistence of Science & Technology and Society - Essential Communication for Coexistence of Science & Technology and Society Notable Speakers: - Gretchen Kalonji: Assistant to Director-General at UNESCO - Sheila Jasanoff: Director of STS Program at Harvard Kennedy School - Walter Bender: Former Director of MIT Media Lab and One Laptop Per Child- Jack Andraka: 16-year old Cancer Resesarcher
2013.05.31
View 10274
An efficient strategy for developing microbial cell factories by employing synthetic small regulatory RNAs
A new metabolic engineering tool that allows fine control of gene expression level by employing synthetic small regulatory RNAs was developed to efficiently construct microbial cell factories producing desired chemicals and materials Biotechnologists have been working hard to address the climate change and limited fossil resource issues through the development of sustainable processes for the production of chemicals, fuels and materials from renewable non-food biomass. One promising sustainable technology is the use of microbial cell factories for the efficient production of desired chemicals and materials. When microorganisms are isolated from nature, the performance in producing our desired product is rather poor. That is why metabolic engineering is performed to improve the metabolic and cellular characteristics to achieve enhanced production of desired product at high yield and productivity. Since the performance of microbial cell factory is very important in lowering the overall production cost of the bioprocess, many different strategies and tools have been developed for the metabolic engineering of microorganisms. One of the big challenges in metabolic engineering is to find the best platform organism and to find those genes to be engineered so as to maximize the production efficiency of the desired chemical. Even Escherichia coli, the most widely utilized simple microorganism, has thousands of genes, the expression of which is highly regulated and interconnected to finely control cellular and metabolic activities. Thus, the complexity of cellular genetic interactions is beyond our intuition and thus it is very difficult to find effective target genes to engineer. Together with gene amplification strategy, gene knockout strategy has been an essential tool in metabolic engineering to redirect the pathway fluxes toward our desired product formation. However, experiment to engineer many genes can be rather difficult due to the time and effort required; for example, gene deletion experiment can take a few weeks depending on the microorganisms. Furthermore, as certain genes are essential or play important roles for the survival of a microorganism, gene knockout experiments cannot be performed. Even worse, there are many different microbial strains one can employ. There are more than 50 different E. coli strains that metabolic engineer can consider to use. Since gene knockout experiment is hard-coded (that is, one should repeat the gene knockout experiments for each strain), the result cannot be easily transferred from one strain to another. A paper published in Nature Biotechnology online today addresses this issue and suggests a new strategy for identifying gene targets to be knocked out or knocked down through the use of synthetic small RNA. A Korean research team led by Distinguished Professor Sang Yup Lee at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), a prestigeous science and engineering university in Korea reported that synthetic small RNA can be employed for finely controlling the expression levels of multiple genes at the translation level. Already well-known for their systems metabolic engineering strategies, Professor Lee’s team added one more strategy to efficiently develop microbial cell factories for the production of chemicals and materials. Gene expression works like this: the hard-coded blueprint (DNA) is transcribed into messenger RNA (mRNA), and the coding information in mRNA is read to produce protein by ribosomes. Conventional genetic engineering approaches have often targeted modification of the blueprint itself (DNA) to alter organism’s physiological characteristics. Again, engineering the blueprint itself takes much time and effort, and in addition, the results obtained cannot be transferred to another organism without repeating the whole set of experiments. This is why Professor Lee and his colleagues aimed at controlling the gene expression level at the translation stage through the use of synthetic small RNA. They created novel RNAs that can regulate the translation of multiple messenger RNAs (mRNA), and consequently varying the expression levels of multiple genes at the same time. Briefly, synthetic regulatory RNAs interrupt gene expression process from DNA to protein by destroying the messenger RNAs to different yet controllable extents. The advantages of taking this strategy of employing synthetic small regulatory RNAs include simple, easy and high-throughput identification of gene knockout or knockdown targets, fine control of gene expression levels, transferability to many different host strains, and possibility of identifying those gene targets that are essential. As proof-of-concept demonstration of the usefulness of this strategy, Professor Lee and his colleagues applied it to develop engineered E. coli strains capable of producing an aromatic amino acid tyrosine, which is used for stress symptom relief, food supplements, and precursor for many drugs. They examined a large number of genes in multiple E. coli strains, and developed a highly efficient tyrosine producer. Also, they were able to show that this strategy can be employed to an already metabolically engineered E. coli strain for further improvement by demonstrating the development of highly efficient producer of cadaverine, an important platform chemical for nylon in the chemical industry. This new strategy, being simple yet very powerful for systems metabolic engineering, is thus expected to facilitate the efficient development of microbial cell factories capable of producing chemicals, fuels and materials from renewable biomass. Source: Dokyun Na, Seung Min Yoo, Hannah Chung, Hyegwon Park, Jin Hwan Park, and Sang Yup Lee, “Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs”, Nature Biotechnology, doi:10.1038/nbt.2461 (2013)
2013.03.19
View 11333
New BioFactory Technique Developed using sRNAs
Professor Sang Yup Lee - published on the online edition of Nature Biotechnology. “Expected as a new strategy for the bio industry that may replace the chemical industry.”- KAIST Chemical & Biomolecular engineering department’s Professor Sang Yup Lee and his team has developed a new technology that utilizes the synthetic small regulatory RNAs (sRNAs) to implement the BioFactory in a larger scale with more effectiveness. * BioFactory: Microbial-based production system which creates the desired compound in mass by manipulating the genes of the cell. In order to solve the problems of modern society, such as environmental pollution caused by the exhaustion of fossil fuels and usage of petrochemical products, an eco-friendly and sustainable bio industry is on the rise. BioFactory development technology has especially attracted the attention world-wide, with its ability to produce bio-energy, pharmaceuticals, eco-friendly materials and more. For the development of an excellent BioFactory, selection for the gene that produces the desired compounds must be accompanied by finding the microorganism with high production efficiency; however, the previous research method had a complicated and time-consuming problem of having to manipulate the genes of the microorganism one by one. Professor Sang Yup Lee’s research team, including Dr. Dokyun Na and Dr. Seung Min Yoo, has produced the synthetic sRNAs and utilized it to overcome the technical limitations mentioned above. In particular, unlike the existing method, this technology using synthetic sRNAs exhibits no strain specificity which can dramatically shorten the experiment that used to take months to just a few days. The research team applied the synthetic small regulatory RNA technology to the production of the tyrosine*, which is used as the precursor of the medicinal compound, and cadaverine**, widely utilized in a variety of petrochemical products, and has succeeded developing BioFactory with the world’s highest yield rate (21.9g /L, 12.6g / L each). *tyrosine: amino acid known to control stress and improve concentration **cadaverine: base material used in many petrochemical products, such as polyurethane Professor Sang Yup Lee highlighted the significance of this research: “it is expected the synthetic small regulatory RNA technology will stimulate the BioFactory development and also serve as a catalyst which can make the chemical industry, currently represented by its petroleum energy, transform into bio industry.” The study was carried out with the support of Global Frontier Project (Intelligent Bio-Systems Design and Synthesis Research Unit (Chief Seon Chang Kim)) and the findings have been published on January 20th in the online edition of the worldwide journal Nature Biotechnology.
2013.02.21
View 13037
Op-Ed by Prof. David Helfman: Global Science and Education in the 21st Century
Professor David Helfman from the Department of Biological Sciences and Graduate School of Nanoscience and Technology(https://sites.google.com/site/cellsignalinglaboratory/home) recently wrote an Op-Ed in the January 2013 issue of Journal of Happy Scientists and Engineers that ispublished by the Ministry of Science, Education and Technology, the Republic of Korea. In the article entitled “Global Science and Education in the 21st Century,” Professor Helfman addressed three important issues in science and education, which will have a great impact for the development of world-leading universities in Korea. For the article, please see the attachment.
2013.01.22
View 13716
High Efficiency Bio-butanol production technology developed
KAIST and Korean Company cooperative research team has developed the technology that increases the productivity of bio-butanol to equal that of bio-ethanol and decreases the cost of production. Professor Lee Sang Yeop (Department of Biological-Chemical Engineering) collaborated with GS Caltex and BioFuelChem Ltd. to develop a bio-butanol production process using the system metabolism engineering method that increased the productivity and decreased the production cost. Bio-butanol is being widely regarded as the environmentally friendly next generation energy source that surpasses bio-ethanol. The energy density of bio-butanol is 29.9MJ (mega Joule) per Liter, 48% larger than bio-ethanol (19.6MJ) and comparable to gasoline (32MJ). Bio-butanol is advantageous in that it can be processed from inedible biomass and is therefore unrelated to food crises. Especially because bio-butanol shows similar characteristics especially in its octane rating, enthalpy of vaporization, and air-fuel ratio, it can be used in a gasoline engine. However barriers such as difficulty in gene manipulation of producer bacterium and insufficient information prevented the mass production of bio-butanol. Professor Lee’s team applied the system metabolism engineering method that he had invented to shift the focus to the production pathway of bio-butanol and made a new metabolism model. In the new model the bio-butanol production pathway is divided into the hot channel and the cold channel. The research team focused on improving the efficiency of the hot channel and succeeded in improving the product yield of 49% (compared to theoretical yield) to 87%. The team furthered their research and developed a live bio-butanol collection and removal system with GS Caltex. The collaboration succeeded in producing 585g of butanol using 1.8kg of glucose at a rate of 1.3g per hour, boasting world’s highest concentration, productivity, and rate and improving productivity of fermentation by three fold and decreasing costs by 30%. The result of the research was published in world renowned ‘mBio’ microbiology journal.
2012.12.21
View 10088
KAIST International Students Organize KAIST ONE Program
International Students at KAIST are running a program called “KAIST ONE” (Overseas Networking Exchange) in order to promote an active exchange between students and to present their cultures. Originally an international cultural activity at the ICU (then the Information and Communications University) in 2007, the program changed its name to “KAIST ONE” and was continued after the merging of the university with KAIST. Students of about 40 different countries have participated to date, and each annual event attracts more than 150 students. Over 700 international students from 70 different countries around the world spontaneously organize and manage the KAIST ONE program, which is run five times this semester, every other Thursday from 7p.m. to 9p.m. at the KAIST International Center. The 11th of last month and the 1st of this month witnessed an enthusiastic response from about 150 participants who joined the Columbian and the Saudi Arabian students in introducing their cultures, presenting traditional cultural performances, and sharing traditional foods. The next in line are Danish, Ugandan, and Cameroonian students who are set to have their turns on this month’s 15th, 29th, and next month’s 6th, respectively. Also notable is the active attention and support from foreign embassies such as the participation of Tunisian, Brazilian, Pakistani, Azerbaijani, Thai, and German ambassadors in the program since last year to provide food and introductory guides to cultures. The director of this year’s program, Karim Charfi (Tunisian, 3rd year Electrical Engineering) said, “During the selection stage of each semester, everyone competes for the chance to present their country,” and “KAIST ONE has established itself as a unique and exotic cultural event at KAIST since it networks about 40 of the relatively less known countries such as Uganda, Cameroon, Tunisia, and Chile and the people with diverse cultures.” The supervisor of the program, Chang Dong Yoo of the Office of Special Projects and Institutional Relations said, “KAIST ONE is an opportunity for international students to acquaint people with their cultures, and it is also a site of cultural exchange and of building friendships among KAIST students and international students,” and “we plan to extend the event such that not only the KAIST members but also the local residents can join in.” The program welcomes KAIST students as well as the general public.
2012.12.21
View 8779
Novel material that prevents health decline with age found
Professor Kim Dae Soo (Department of Biological Science), his research team, the Choong Nam University Medicine School, and various companies conducted collaborative research succeeded in developing a novel material that prevents health decline with age. The result was published in PLoS One Journal with the title “Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice”. Longevity and health can be obtained with reducing consumption of food and aerobic exercise. Professor Kim’s team focused on the fact that reduced consumption of food and aerobic exercise increase the coenzyme (NAD+) which suppresses the aging of cells. The research team discovered that by activating NQO1 enzyme with Beta-lapachone, the amount of NAD+ in the body increases even without reduction of food consumption or aerobic exercise. Even consumption of Beta-lapachone by aging mice caused an improved on the brain and exercise ability of the mice. It is expected that commercialization of Beta-lapachone will be possible as it is a chemical that is commonly found in herbs used in both the orient and the oxidant.
2012.12.21
View 8326
KAIST shocks the world with its creativity
Researchers at KAIST yielded great results at the world’s leading international Human Computer Interaction Society. Professor Lee Gi Hyuk’s (Department of Computer Sciences) and Professor Bae Seok Hyung’ (Department of Industrial Design) respective teams received awards in two criteria in student innovation contest and was the only domestic university that presented their thesis at the ACM Symposium on User Interface Software. The ACM UIST holds a student innovation contest prior to its opening. This year’s topic was the pressure sensing multi touch pad of Synaptics and involved 27 prestigious universities including MIT and CMU. The KAIST team (Ki Son Joon Ph.D. candidate, Son Jeong Min M.A. candidate of Department of Computer Sciences and Woo Soo Jin M.A. candidate of Department of Industrial Design) designed a system that allows modulated control by attaching a simple structure to the pressure sensing multi touch pad. The second KAIST team (Huh Seong Guk Ph.D. candidate, Han Jae Hyun Ph.D. candidate, Koo Ji Sung Ph.D. candidate at the Department of Computer Sciences, and Choi Ha Yan M.A. candidate at Department of Industrial Design) designed a system that utilizes a highly elastic fiber to allow the sensing of lateral forces. They also created a slingshot game application which was the second most popular system. In the thesis session Professor Bae’s team (Lee DaWhee Ph.D. candidate, Son Kyung Hee Ph.D. candidate, Lee Joon Hyup M.A. candidate at Department of Industrial Design) presented a thesis that dealt with the technology that innovated the table pen for displays. The new ‘phantom pen’ solved the issue arising from the hiding effect of the pen’s contact point and the display error due to the thickness of the display. In addition the ‘phantom pen’ has the ability to show the same effects as crayons or markers in a digital environment.
2012.11.29
View 12612
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 21