본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.26
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
IP
by recently order
by view order
Thinking Out of the Box: KAIST Silicon Valley Innovation Platform
KAIST established a liaison office in San Jose, California, to support the entrepreneurship of KAIST graduates, students, and faculty who aspire to transform their innovative ideas into business. The office, KAIST Silicon Valley Innovation Platform (SVIP), is located within the Korea Trade-Investment Promotion Agency (KOTRA) IT Center on North First Street in San Jose. SVIP collects information and analyzes trends on emerging technologies; provides various educational programs on entrepreneurship and technology translation; offers opportunities to prospective entrepreneurs to engage with industry and research and government organizations; and assists Korean startups in accessing the US and North American market. President Steve Kang attended the opening ceremony of the office on June 14th and encouraged KAIST alumni living in the US to share their ideas and technology innovations and transform them into business opportunities. For more information, please contact Professor Soung-Hie Kim (seekim@business.kaist.ac.kr) from the Graduate School of Information and Media Management, KAIST.
2013.07.04
View 8811
KAIST hosts 2013 Wearable Computer Contest
2013 Wearable Computer Contest (WCC) will be held in early November. This year’s contest is hosted by KAIST and sponsored by Samsung Electronics. Wearable computers are drawing attention in the IT world as a potentially convenient information and communication device for future generations, which are attached to clothing or on the body. As smartphones have grown increasingly more popular, various supporting devices are being developed. The IT industry is targeting wearable computers for future development. The main leaders of the field, Samsung, Apple (i-Watch) and Google (Google Glasses) are joining the race for its development. European and US firms halted their research in wearable computers in the 2000s, but there has been a great burst of interest recently. Korea has been consistently taking on wearable computer research since 2003 and held the Wearable Computer Contest for the last nine years. Since 2005, the contest aims to promote leading edge technological research and Intellectual Property (IP) as well as cultivate a professional workforce in Korea. The contest has promoted world class research in the field of wearable computer technology. Moreover, KAIST has increased support for its competing teams through Samsung sponsorship and is considering applying the technology from the contest into Samsung products. Winning teams receive 1,500,000 Korean won and Samsung smart IT devices to produce an actual wearable computer. KAIST has increased the number of members who can participate in the competing teams in the finals from 10 to 15 to provide more opportunities to develop wearable computers. With the theme “Smart IT: Any-information for Anybody,” the 2013 Wearable Computer Contest requires competing teams to suggest an innovative idea which combines IT and fashion for wearable computers. Teams that pass the paper and presentation evaluation go on to the finals, where 15 teams will have four months of production period for the final evaluation in November. The final teams also receive systematic education on ubiquitous computing, wearable computer platforms, and Human-Computer Interaction (HCI). The Wearable Computer Contest is holding an ideas contest pitched in a poster format. This contest evaluates proposals for wearable computers, and there is no requirement to enter the rest of the contest. Anyone can compete without having to physically make the product. More information on the registration and the contest can be found at http://www.ufcom.org/.
2013.04.30
View 7871
The new era of personalized cancer diagnosis and treatment
Professor Tae-Young Yoon - Succeeded in observing carcinogenic protein at the molecular level - “Paved the way to customized cancer treatment through accurate analysis of carcinogenic protein” The joint KAIST research team of Professor Tae Young Yoon of the Department of Physics and Professor Won Do Huh of the Department of Biological Sciences have developed the technology to monitor characteristics of carcinogenic protein in cancer tissue – for the first time in the world. The technology makes it possible to analyse the mechanism of cancer development through a small amount of carcinogenic protein from a cancer patient. Therefore, a personalised approach to diagnosis and treatment using the knowledge of the specific mechanism of cancer development in the patient may be possible in the future. Until recently, modern medicine could only speculate on the cause of cancer through statistics. Although developed countries, such as the United States, are known to use a large sequencing technology that analyses the patient’s DNA, identification of the interactions between proteins responsible for causing cancer remained an unanswered question for a long time in medicine. Firstly, Professor Yoon’s research team has developed a fluorescent microscope that can observe even a single molecule. Then, the “Immunoprecipitation method”, a technology to extract a specific protein exploiting the high affinity between antigens and antibodies was developed. Using this technology and the microscope, “Real-Time Single Molecule co-Immunoprecipitation Method” was created. In this way, the team succeeded in observing the interactions between carcinogenic and other proteins at a molecular level, in real time. To validate the developed technology, the team investigated Ras, a carcinogenic protein; its mutation statistically is known to cause around 30% of cancers. The experimental results confirmed that 30-50% of Ras protein was expressed in mouse tumour and human cancer cells. In normal cells, less than 5% of Ras protein was expressed. Thus, the experiment showed that unusual increase in activation of Ras protein induces cancer. The increase in the ratio of active Ras protein can be inferred from existing research data but the measurement of specific numerical data has never been done before. The team suggested a new molecular level diagnosis technique of identifying the progress of cancer in patients through measuring the percentage of activated carcinogenic protein in cancer tissue. Professor Yoon Tae-young said, “This newly developed technology does not require a separate procedure of protein expression or refining, hence the existing proteins in real biological tissues or cancer cells can be observed directly.” He also said, “Since carcinogenic protein can be analyzed accurately, it has opened up the path to customized cancer treatment in the future.” “Since the observation is possible on a molecular level, the technology confers the advantage that researchers can carry out various examinations on a small sample of the cancer patient.” He added, “The clinical trial will start in December 2012 and in a few years customized cancer diagnosis and treatment will be possible.” Meanwhile, the research has been published in Nature Communications (February 19). Many researchers from various fields have participated, regardless of the differences in their speciality, and successfully produced interdisciplinary research. Professor Tae Young Yoon of the Department of Physics and Professors Dae Sik Lim and Won Do Huh of Biological Sciences at KAIST, and Professor Chang Bong Hyun of Computational Science of KIAS contributed to developing the technique. Figure 1: Schematic diagram of observed interactions at the molecular level in real time using fluorescent microscope. The carcinogenic protein from a mouse tumour is fixed on the microchip, and its molecular characteristics are observed live. Figure 2: Molecular interaction data using a molecular level fluorescent microscope. A signal in the form of spike is shown when two proteins combine. This is monitored live using an Electron Multiplying Charge Coupled Device (EMCCD). It shows signal results in bright dots. An organism has an immune system as a defence mechanism to foreign intruders. The immune system is activated when unwanted pathogens or foreign protein are in the body. Antibodies form in recognition of the specific antigen to protect itself. Organisms evolved to form antibodies with high specificity to a certain antigen. Antibodies only react to its complementary antigens. The field of molecular biology uses the affinity between antigens and antibodies to extract specific proteins; a technology called immunoprecipitation. Even in a mixture of many proteins, the protein sought can be extracted using antibodies. Thus immunoprecipitation is widely used to detect pathogens or to extract specific proteins. Technology co-IP is a well-known example that uses immunoprecipitation. The research on interactions between proteins uses co-IP in general. The basis of fixing the antigen on the antibody to extract antigen protein is the same as immunoprecipitation. Then, researchers inject and observe its reaction with the partner protein to observe the interactions and precipitate the antibodies. If the reaction occurs, the partner protein will be found with the antibodies in the precipitations. If not, then the partner protein will not be found. This shows that the two proteins interact. However, the traditional co-IP can be used to infer the interactions between the two proteins although the information of the dynamics on how the reaction occurs is lost. To overcome these shortcomings, the Real-Time Single Molecule co-IP Method enables observation on individual protein level in real time. Therefore, the significance of the new technique is in making observation of interactions more direct and quantitative. Additional Figure 1: Comparison between Conventional co-IP and Real-Time Single Molecule co-IP
2013.04.01
View 18964
Top Ten Ways Biotechnology Could Improve Our Everyday Life
The Global Agenda Council on Biotechnology, one of the global networks under the World Economic Forum, which is composed of the world’s leading experts in the field of biotechnology, announced on February 25, 2013 that the council has indentified “ten most important biotechnologies” that could help meet rapidly growing demand for energy, food, nutrition, and health. These new technologies, the council said, also have the potential to increase productivity and create new jobs. “The technologies selected by the members of the Global Agenda Council on Biotechnology represent almost all types of biotechnology.Utilization of waste, personalized medicine,and ocean agricultureare examples of the challenges where biotechnology can offer solutions,”said Sang Yup Lee, Chair of the Global Agenda Council on Biotechnology and Distinguished Professor in the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology (KAIST). He also added that “the members of the council concluded that regulatory certainty, public perception, and investment are the key enablers for the growth of biotechnology.” These ideas will be further explored during “Biotechnology Week” at the World Economic Forum’s Blog (http://wef.ch/blog) from Monday, 25 February, 2013. The full list follows below: Bio-based sustainable production of chemicals, energy, fuels and materials Through the last century, human activity has depleted approximately half of the world’s reserves of fossil hydrocarbons. These reserves, which took over 600 million years to accumulate, are non-renewable and their extraction, refining and use contribute significantly to human emissions of greenhouse gases and the warming of our planet. In order to sustain human development going forward, a carbon-neutral alternative must be implemented. The key promising technology is biological synthesis; that is, bio-based production of chemicals, fuels and materials from plants that can be re-grown. Engineering sustainable food production The continuing increase in our numbers and affluence are posing growing challenges to the ability of humanity to produce adequate food (as well as feed, and now fuel). Although controversial, modern genetic modification of crops has supported growth in agricultural productivity. In 2011, 16.7 million farmers grew biotechnology-developed crops on almost 400 million acres in 29 countries, 19 of which were developing countries. Properly managed, such crops have the potential to lower both pesticide use and tilling which erodes soil. Sea-water based bio-processes Over 70% of the earth surface is covered by seawater, and it is the most abundant water source available on the planet. But we are yet to discover the full potential of it. For example with halliophic bacteria capable of growing in the seawater can be engineered to grow faster and produce useful products including chemicals, fuels and polymeric materials. Ocean agriculture is also a promising technology. It is based on the photosynthetic biomass from the oceans, like macroalgae and microalgae. Non-resource draining zero waste bio-processing The sustainable goal of zero waste may become a reality with biotechnology. Waste streams can be processed at bio-refineries and turned into valuable chemicals and fuels, thereby closing the loop of production with no net waste. Advances in biotechnology are now allowing lower cost, less draining inputs to be used, including methane, and waste heat. These advances are simplifying waste streams with the potential to reduce toxicity as well as support their use in other processes, moving society progressively closer to the sustainable goal of zero waste. Using carbon dioxide as a raw material Biotechnology is poised to contribute solutions to mitigate the growing threat of rising CO2 levels. Recent advances are rapidly increasing our understanding of how living organisms consume and use CO2. By harnessing the power of these natural biological systems, scientists are engineering a new wave of approaches to convert waste CO2 and C1 molecules into energy, fuels, chemicals, and new materials. Regenerative medicine Regenerative medicine has become increasingly important due to both increased longevity and treatment of injury. Tissue engineering based on various bio-materials has been developed to speed up the regenerative medicine. Recently, stem cells, especially the induced pluripotent stem cells (iPS), have provided another great opportunity for regenerative medicine. Combination of tissue engineering and stem cell (including iPS) technologies will allow replacements of damaged or old human organs with functional ones in the near future. Rapid and precise development and manufacturing of medicine and vaccines A global pandemic remains one of the most real and serious threats to humanity. Biotechnology has the potential to rapidly identify biological threats, develop and manufacture potential cures. Leading edge biotechnology is now offering the potential to rapidly produce therapeutics and vaccines against virtually any target. These technologies, including messenger therapeutics, targeted immunotherapies, conjugated nanoparticles, and structure-based engineering, have already produced candidates with substantial potential to improve human health globally. Accurate, fast, cheap, and personalized diagnostics and prognostics Identification of better targets and combining nanotechnology and information technology it will be possible to develop rapid, accurate, personalized and inexpensive diagnostics and prognostics systems. Bio-tech improvements to soil and water Arable land and fresh water are two of the most important, yet limited, resources on earth. Abuse and mis-appropriation have threatened these resources, as the demand on them has increased. Advances in biotechnology have already yielded technologies that can restore the vitality and viability of these resources. A new generation of technologies: bio-remediation, bio-regeneration and bio-augmentation are being developed, offering the potential to not only further restore these resources, but also augment their potential. Advanced healthcare through genome sequencing It took more than 13 years and $1.5 billion to sequence the first human genome and today we can sequence a complete human genome in a single day for less than $1,000. When we analyze the roughly 3 billion base pairs in such a sequence we find that we differ from each other in several million of these base pairs. In the vast majority of cases these difference do not cause any issues but in rare cases they cause disease, or susceptibility to disease. Medical research and practice will increasingly be driven by our understanding of such genetic variations together with their phenotypic consequences.
2013.03.19
View 12085
KAIST and Saudi Aramco agreed to establish a joint CO2 research center in Korea
The Korea Advanced Institute of Science and Technology (KAIST) and Saudi Aramco, a global energy and petrochemicals enterprise, signed a memorandum of understanding (MOU) on January 6, 2013 in Dhahran, Saudi Arabia and pledged to jointly collaborate in research and development of innovative technologies and solutions to address the world"s energy challenges. Under the MOU, the two entities agreed to establish a research center, Saudi Aramco-KAIST CO2 Research Center, near KAIST"s main campus in Daejeon, Korea. The research center, to be jointly managed by KAIST and Saudi Aramco, will foster and facilitate research collaborations in areas such as tackling carbon dioxide (CO2) emissions by removal or capture of CO2, conversing CO2 into useful products, developing efficiency improvements in energy production, sharing carbon management technologies, establishing exchange programs, and conducting joint projects. According to Saudi Aramco, the company"s collaboration with KAIST is the first partnership established in Asia. Khalid A. Al-Falih, President and CEO of Saudi Aramco, said, "The CO2 Research Center represents a major step in Saudi Aramco"s research and technology strategy to partner with top global institutions to help address and find sustainable solutions to the world’s energy challenge both domestically and internationally."
2013.03.19
View 10148
Prof. Jong Chul Ye Appointed as the Editor of IEEE TIP
Professor Jong Chul Ye KAIST Bio & brain engineering department’s Professor Jong Chul Ye has been appointed as the editor of the "IEEE image processing transactions (IEEE TIP, IEEE Transaction on Image Processing)’, a prominent journal in the sector of imaging and medical image processing. Professor Ye will act as the editor in the field of medical imaging from February 2013 to January 2016, during which he will participate in examining thesis, establishing the direction of the journal and more. Professor Jong Chul Ye was recognized for his notable work in the field of medical imaging research using compressed sensing for the development of a high resolution medical image reconstruction techniques. This technique has pioneered a new area that is applicable in magnetic resonance imaging (MRI), computed tomography (CT), positron emission Camcorder (PET) and brain imaging. On the other hand, “IEEE TIP” was first published in 1992 and is currently the world’s leading authority in the field of image processing, medical imaging, image acquisition, compression and output.
2013.02.21
View 10399
KAIST to be Nominated as the Top 100 Innovators
A total of 7 South Korean universities, research institutes, and corporates, including KAIST, POSTECH, and Korean Research Institute of Chemical Technology, have been selected as the 2012 Top 100 Global Innovative Organizations. In particular, universities were part of the list for the first time in 2012, with two South Korean universities, KAIST and POSTECH, being the only entities representing their category. Thomson Reuters, the world"s leading media and financial-data firm, has announced a report entitled "2012 Thomson Reuters Top 100 Global Innovative Organizations", which includes KAIST and 6 other South Korean institutes, corporates, and universities. Thomson Reuters has been publishing an annual report since last year that selects the Top 100 Global Innovative Organizations by analyzing quantitative and qualitative data through original methods and criteria such as ▲the ratio of published patent applications to granted patents, ▲the number of innovative patents that have quadrilateral patents in their patent families, ▲the number of citations to each organizations" patents, excluding self-citations, and ▲the generation of a sizable amount of innovation. According to the most recent report, 47 American corporates and 21 European corporates have been selected as the Top 100 Global Innovative Organizations. Japan was the leading nation in the continent of Asia with 25 listed corporates, while 7 corporates, research institutes, and universities, including KAIST, have been selected from South Korea. Besides, POSTECH, Korea Research Institute of Science and Technology, Korea Electronics Technology Institute, LSIS, LG Electronics, and Samsung Electronics were the 6 other South Korean organizations that are included in the list. Doo Won-soo, chief of Public Relations Department of KAIST, said "Thomson Reuter"s selection of innovative organizations demonstrates that KAIST is an organization that puts great efforts for the development of advanced technologies and innovative research," also reminding that KAIST earned the 5th position by World Intellectual Property Organization (WIPO), an agency of the United Nations, among universities worldwide with applications for international patents. Meanwhile, Thomson Reuters is the world"s leading media and financial-data firm that offers valuable intelligent information to CEO"s and experts in the vast fields of finance, banking, legislation, taxation, accounting, intellectual properties, science, and media. Reports from Thomson Reuters are also accounted in the assessment of Times Higher Educations (THE), the British organization for world university rankings. The head office of Thomson Reuters is currently in New York, USA, with a total of 60,000 employees working overseas.
2012.12.21
View 9243
Successful development and analysis of mesoporous quasicrystal structures
Professor Osamu Terasaki’s research team from the EEWS Graduate School at KAIST successfully synthesized mesoporous quasicrystalline silica and developed a new method of analyzing its growth. The theory proposed by the team laid the foundation for the scientific examination of quasicrystal phenomena during the formation of micelles particles, a type of soft matter. The paper was published in the July edition of Nature magazine. Scientists have faced difficulty in systematically explaining the mesoporous quasicrystal structures that are found in solidified versions of soft matter systems. However, the theoretical foundation from this research is expected to help promote the research and development of new nano-structured materials. Mesoporous quaicrystals are soft matters that have high symmetry and a larger characteristic length scale than the nanoscale, thereby making it possible to develop materials that have controllable optical properties. This technology can be applied to the sustainable storage, use, and reproduction of energy. Professor Terasaki’s team succeeded in synthesizing mesoporous quasicrystalline silica and proved the formation of dodecagonal column-shaped crystals as well as dodecagonal, rotationally symmetric electron diffraction patterns near the crystals using Transmission Electron Microscopy. Quasicrystals are an abbreviation of ‘quasiperiodic crystals’ and have what is called the ‘third solid’ property; they have a structural arrangement that is between arranged crystal structures, such as metals, and non-crystalline structures, such as glass. This crystalline structure was only recently found, and the 2011 Nobel Chemistry Award was given to research in this field. When porous materials are synthesized into quasicrystals, the crystalline structures of the pores can be designed and controlled in any way, making it possible to create new materials for a wide range of fields. Professor Terasaki said that ‘The discovery of highly symmetric quasicrystals can lead to the alteration of a material’s optical properties, allowing the development of photonic crystals in the visible spectra.’ He also explained that this control of a material’s optical energy absorption could be the core technology behind energy harvesting. This research was jointly conducted by Professor Terasaki from the EEWS Graduate School at KAIST and Stockholm University in Sweden.
2012.08.01
View 9015
KAIST researchers verify and control the mechanical properties of graphene
KAIST researchers have successfully verified and controlled the mechanical properties of graphene, a next-generation material. Professor Park Jung Yong from the EEWS Graduate School and Professor Kim Yong Hyun from the Graduate School of Nanoscience and Technology have succeeded in fluorinating a single atomic-layered graphene sample and controlling its frictional and adhesive properties. This is the first time the frictional properties of graphene have been examined at the atomic level, and the technology is expected to be applied to nano-sized robots and microscopic joints. Graphene is often dubbed “the dream material” because of its ability to conduct high amounts of electricity even when bent, making it the next-generation substitute for silicon semiconductors, paving the way for flexible display and wearable computer technologies. Graphene also has high potential applications in mechanical engineering because of its great material strength, but its mechanical properties remained elusive until now. Professor Park’s research team successfully produced individual graphene samples with fluorine-deficiency at the atomic level by placing the samples in Fluoro-xenon (XeF2) gas and applying heat. The surface of the graphene was scanned using a micro probe and a high vacuum atomic microscope to measure its dynamic properties. The research team found that the fluorinated graphene sample had 6 times more friction and 0.7 times more adhesiveness than the original graphene. Electrical measurements confirmed the fluorination process, and the analysis of the findings helped setup the theory of frictional changes in graphene. Professor Park stated that “graphene can be used for the lubrication of joints in nano-sized devices” and that this research has numerous applications such as the coating of graphene-based microdynamic devices. This research was published in the online June edition of Nano Letters and was supported by the Ministry of Science, Technology, and Education and the National Research Foundation as part of the World Class University (WCU) program.
2012.07.24
View 16047
Korea's First MOU between a University Education Volunteer Work Group and Local Government
- 200 Adolescents from Yuseong-gu to Receive Education Community Services Midam Scholarship committee which is composed of KAIST"s students and graduates, will draw up a contract that states that it will work together with the Yuseong-gu municipality for the development of the district education services on the 14th at the Yuseong-gu office. Both sides will together ▲mentor the local students, ▲cooperate to run and develop creative programs, ▲exchange work for the development of the KAIST Midam Scholarship Committee, ▲conduct various other projects. From now, the Midam Scholarship Committee will teach about 200 students in Yuseong-gu. The drawing of this contract has much meaning in that it is the first of its kind. The Midam Scholarship Committee was founded on 2009 by students in KAIST to teach math, english, and science to students from families with low income levels. This committee has made educational pacts with middle and high schools located in Daejeong such as Chungnam High School and Beobdong High School, and has not only taught these students but also has given scholarships to the selected students. On one hand, the Midam Scholarship Committee has also supported 10 students in KAIST who were in need with 300000won each on the 6th. This fund was raised through the donations of alumni and mentoring projects. The Midam Scholarship Committee has been recognized for its positive impacts on the society and has received an award from the Yuseong-gu municipality office.
2012.05.10
View 8997
KAIST Midam Institute Gives Donations Raised by Students
Midam Association which is consisted of students from KAIST (representatives Neung-in Jang and Minkyu Jin) has donated 300thousand won per person to ten KAIST students who are in need totaling a 3million won of donation. This donation was created through the mentoring activities of the members and donations from alumni and alumni corporations. Midam Association which was created on July of 2009 teaches math, science, and English to children from lesser off families. It started as a club created by undergraduate students and has now turned into an NGO where other local volunteers could participate. Currently as of March, there are ten schools including Bubdong Middle School, Jeon-min Middle School, Chungnam High School, and Jeonmin High School that have a pact with the Midam Association. The association has been conducting education assistance as well as giving donations to students in need. Last January, UNIST has benchmarked KAIST"s Midam Association and has started free education volunteer programs in association with Ulsan city. On the other hand, Midam Association of KAIST has been awarded a Certificate of Recognition by the Municipality of Yuseong-gu, Daejeon in recognition of their deed.
2012.05.10
View 8491
KAIST to Support R&D Plans of Mid-Small Sized Enterprises
KAIST signed a MOU for the ‘Support for R&D Plans for Mid-Small Sized Firms’ with the Small and Medium Business Conference and Korea South-East Power Co. Ltd. KAIST and Korea South-East Power Co. Ltd. will now be improving their cooperation on supporting R&D plans to help the technology development and commercialization for Small and Medium Businesses. Korea South-East Power Co. Ltd. will now select 20 best qualified firms out of its 300 cooperating firms and suggest them as candidates to KAIST Business membership System. The suggested firms will be given: ▲Strategy R&D Planning ▲Consult Difficult Technology ▲Provide Information on Research Labs and Researchers among other various programs. The firms participating in the KAIST Business membership System will be able to minimize risk and increase its possibility for success on Development Technology. KAIST Business membership System is a program provided to firms for a membership fee, in order to create technological innovation and strengthen cooperation between university and industry.
2012.01.31
View 9148
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
>
다음 페이지
>>
마지막 페이지 18