본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
Prof. Song Chong received the IEEE William R. Bennett Prize Paper Award
The IEEE (Institute of Electrical and Electronics Engineers) Communications Society (ComSoc), a renowned global network of professionals with a common interest in advancing communications technologies, has announced the winner of the 2013 William R. Bennett Prize in the field of communications networking. The prize was given to a Korean research team led by Song Chong, Professor of Electrical Engineering at KAIST and Injong Rhee, Professor of Computer Science at North Carolina State University. In addition, Dr. Minsu Shin, Dr. Seongik Hong, and Dr. Seong Joon Kim of Samsung Electronics Co., Ltd. as well as Professor Kyunghan Lee from Ulsan National Institute of Science and Technology were recognized for their contribution. The William R. Bennett Prize for communications networking has been awarded each year since 1994 in recognition of the best paper published in any journal financially sponsored or co-sponsored by ComSoc in the previous three calendar years. Only one paper per year is selected based on its quality, originality, scientific citation index, and peer reviews. Among the previous award winners are Robert Gallager of MIT, and Steven Low of the California Institute of Technology, and Kang G. Shin of the University of Michigan. The Korean research team’s paper, On the Levy-Walk Nature of Human Mobility, was published in the June 2011 issue of IEEE/ACM Transactions on Networking, a bimonthly journal co-sponsored by the IEEE ComSoc, the IEEE Computer Society, and the Association for Computing Machinery (ACM) with its Special Interest Group on Data Communications (SIGCOMM). In the paper, the research team proposed a new statistical model to effectively analyze the pattern of individual human mobility in daily life. The team handed out GPS (global positioning system) devices to 100 participants residing in five different university campuses in Korea and the US and collected data on their movements for 226 days. The mobility pattern obtained from the experiment predicted accurately how the participants actually moved around during their routines. Since publication, the paper has been cited by other papers approximately 350 times. The team’s research results will apply to many fields such as the prevention and control of epidemics, the design of efficient communications networks, and the development of urban and transportation system. The research team received the award on June 10th at the 2013 IEEE International Conference on Communications (ICC) held in Budapest, Hungary, from June 9-13, 2013. Professor Song Chong
2013.07.06
View 12133
Foreign graduates donate to development fund for six years
International graduates of the Global IT Technology Graduate School at KAIST have continued a tradition of giving something back to their alma mater. On May 10th, President Steve Kang held a donation ceremony with 12 donors. Started in 2008, the graduates, mostly consisted of government officials from developing countries, have raised a development fund for KAIST, and in the past six years, a total of 81 graduates donated USD 10,000. “KAIST provided me with an excellent education and research environment during my studies. I’m glad that I can have an opportunity to help my juniors and the university,” said Naryn Kenzhaliyev of Kazakhstan, a graduate present at the ceremony. “Every year, these students voluntarily give when they are about to graduate. We feel proud and greatly appreciated for their philanthropic efforts,” said Professor Jae-Jung Noh, responsible for the global IT technology graduate program. Established in 2006, the Global IT Technology Graduate School has attracted IT specialists from Korea and abroad, offering master’s and doctoral degrees. The school has invited many public servants in developing countries whose expertise lies in IT technology.
2013.07.04
View 5966
Thinking Out of the Box: KAIST Silicon Valley Innovation Platform
KAIST established a liaison office in San Jose, California, to support the entrepreneurship of KAIST graduates, students, and faculty who aspire to transform their innovative ideas into business. The office, KAIST Silicon Valley Innovation Platform (SVIP), is located within the Korea Trade-Investment Promotion Agency (KOTRA) IT Center on North First Street in San Jose. SVIP collects information and analyzes trends on emerging technologies; provides various educational programs on entrepreneurship and technology translation; offers opportunities to prospective entrepreneurs to engage with industry and research and government organizations; and assists Korean startups in accessing the US and North American market. President Steve Kang attended the opening ceremony of the office on June 14th and encouraged KAIST alumni living in the US to share their ideas and technology innovations and transform them into business opportunities. For more information, please contact Professor Soung-Hie Kim (seekim@business.kaist.ac.kr) from the Graduate School of Information and Media Management, KAIST.
2013.07.04
View 8076
KAIST Placed 3rd in the World's Best 100 Emerging Universities
The Times Higher Education (THE) published its world university rankings on June 20, 2013. It is a list of the best 100 universities whose histories are 50 years old or younger. KAIST was ranked 3rd in the list, two places up from the 5th last year. Forbes and Reuters carried a story on the top ten emerging universities out of the listed 100 institutions, highlighting strong showings in the Asian region. For the articles, please see the attached file (Forbes) or click the link (Reuters) below: http://www.reuters.com/article/2013/06/19/education-university-rankings-idUSL2N0EU1HZ20130619
2013.06.22
View 7045
Nanofiber sensor detects diabetes or lung cancer faster and easier
Metal-oxide nanofiber based chemiresistive gas sensors offer greater usability for portable real-time breath tests that can be available on smart phones or tablet PCs in the near future. Daejeon, Republic of Korea, June 11, 2013 -- Today"s technological innovation enables smartphone users to diagnose serious diseases such as diabetes or lung cancer quickly and effectively by simply breathing into a small gadget, a nanofiber breathing sensor, mounted on the phones. Il-Doo Kim, Associate Professor of Materials Science and Engineering Department at the Korea Advanced Institute of Science and Technology (KAIST), and his research team have recently published a cover paper entitled "Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled Breath-Sensing Properties for the Diagnosis of Diabetes," in an academic journal, Advanced Functional Materials (May 20th issue), on the development of a highly sensitive exhaled breath sensor by using hierarchical SnO2 fibers that are assembled from wrinkled thin SnO2 nanotubes. In the paper, the research team presented a morphological evolution of SnO2 fibers, called micro phase-separations, which takes place between polymers and other dissolved solutes when varying the flow rate of an electrospinning solution feed and applying a subsequent heat treatment afterward. The morphological change results in nanofibers that are shaped like an open cylinder inside which thin-film SnO2 nanotubes are layered and then rolled up. A number of elongated pores ranging from 10 nanometers (nm) to 500 nm in length along the fiber direction were formed on the surface of the SnO2 fibers, allowing exhaled gas molecules to easily permeate the fibers. The inner and outer wall of SnO2 tubes is evenly coated with catalytic platinum (Pt) nanoparticles. According to the research team, highly porous SnO2 fibers, synthesized by eletrospinning at a high flow rate, showed five-fold higher acetone responses than that of the dense SnO2 nanofibers created under a low flow rate. The catalytic Pt coating shortened the fibers" gas response time dramatically as well. The breath analysis for diabetes is largely based on an acetone breath test because acetone is one of the specific volatile organic compounds (VOC) produced in the human body to signal the onset of particular diseases. In other words, they are biomarkers to predict certain diseases such as acetone for diabetes, toluene for lung cancer, and ammonia for kidney malfunction. Breath analysis for medical evaluation has attracted much attention because it is less intrusive than conventional medical examination, as well as fast and convenient, and environmentally friendly, leaving almost no biohazard wastes. Various gas-sensing techniques have been adopted to analyze VOCs including gas chromatography-mass spectroscopy (GC-MS), but these techniques are difficult to incorporate into portable real-time gas sensors because the testing equipment is bulky and expensive, and their operation is more complex. Metal-oxide based chemiresistive gas sensors, however, offer greater usability for portable real-time breath sensors. Il-Doo Kim said, "Catalyst-loaded metal oxide nanofibers synthesized by electrospinning have a great potential for future exhaled breath sensor applications. From our research, we obtained the results that Pt-coated SnO2 fibers are able to identify promptly and accurately acetone or toluene even at very low concentration less than 100 parts per billion (ppb)." The exhaled acetone level of diabetes patients exceeds 1.8 parts per million (ppm), which is two to six-fold higher than that (0.3-0.9 ppm) of healthy people. Therefore, a highly sensitive detection that responds to acetone below 1 ppm, in the presence of other exhaled gases as well as under the humid environment of human breath, is important for an accurate diagnosis of diabetes. In addition, Professor Kim said, "a trace concentration of toluene (30 ppb) in exhaled breath is regarded to be a distinctive early symptom of lung cancer, which we were able to detect with our prototype breath tester." The research team has now been developing an array of breathing sensors using various catalysts and a number of semiconducting metal oxide fibers, which will offer patients a real-time easy diagnosis of diseases. ### Youtube Link: http://www.youtube.com/watch?v=t_Hr11dRryg For further inquires: Il-Doo Kim, Professor of Materials Science and Engineering, KAIST Advanced Nanomaterials and Energy Laboratory Tel: +82-42-350-3329 Email: idkim@kaist.ac.kr Clockwise from left to right: left upper shows a magnified SEM image of a broken thin-wall assembled SnO2 fiber. Left below is an array of breath sensors (Inset is an actual size of a breath sensor). The right is the cover of Advanced Functional Materials (May 20th issue) in which a research paper on the development of a highly sensitive exhaled breath sensor by using SnO2 fibers is published. This is the microstructural evolution of SnO2 nanofibers as a function of flow rate during electrospinning.
2013.06.20
View 13414
President Sung-Mo Steve Kang received an alumni award, PINNACLE, from his alma mater.
The following press release is provided by courtesy of Fairleigh Dickinson University:Teaneck, NJ (June 12, 2013) The FDU PINNACLE Society recognized the contributions and achievements of three distinguished alumni at a ceremony preceding the Charter Day reception and dinner on June 7, 2013. This year’s PINNACLE honorees are: Sung-Mo “Steve” Kang, BSEE’70, president, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Neil Koenig, BS’72, co-founder and managing partner, Imowitz Koenig & Co., LLP, New York City; and Robert Silberling, BA’69, special adviser to the CEO, T&M Protection Resources, LLC, New York City. The annual class of The PINNACLE is chosen by past inductees, based on the following criteria: success or distinction in one’s chosen field of endeavor, significant contributions to society and humanity through public or humanitarian service and outstanding service to the University or reflection of the unique character of FDU in one’s life.The PINNACLE was introduced by Fairleigh Dickinson University in 1989 to formally recognize and acknowledge the contributions and achievements of its most distinguished alumni. Today’s ceremony honors the newest members of what has become an ongoing organization for leading FDU alumni. Since its founding in 1942, the University has been committed to providing its students with the education, values and encouragement needed to become active and contributing members of the larger world community. More than 118,000 FDU alumni have gone on to enrich and improve society through their work, volunteer activities and personal actions. Among their ranks, a select few have achieved the highest possible level of performance — the pinnacle — in their respective pursuits. From left are PINNACLE inductees Sung-Mo “Steve” Kang, Neil Koenig, FDU President Sheldon Drucker and Robert Silberling. Photo Credit: Fairleigh Dickinson University
2013.06.14
View 7105
Professor Jay H. Lee to receive the 2013 AIChE CAST Computing in Chemical Engineering Award
Professor Jay H. Lee of Chemical and Biomolecular Engineering Department at KAIST has won the 2013 Computing in Chemical Engineering Award of AIChE"s CAST Division (AIChE, American Institute of Chemical Engineers and CAST, Computing & Systems Technology Division). The CAST Computing in Chemical Engineering Award, sponsored by The Dow Chemical Company, is annually given to an individual who has made outstanding contributions in the application of computing and systems technology to chemical engineering.Professor Lee has been recognized for his pioneering research contributions for “novel paradigms for much improved and robust model predictive control in industrial processes.” He is currently the Head of Chemical and Biomolecular Engineering Department and Director of Brain Korea (BK) 21 Program at the department. BK21 is the Korean government’s initiative to support the growth of research universities in the nation and foster highly trained master’s and doctoral students as well as researchers. The CAST Computing in Chemical Engineering Award will be presented to Professor Jay H. Lee at the CAST Division dinner to be held at the AIChE Annual Meeting this November in San Francisco, where he will also deliver the after dinner lecture associated with this award.
2013.06.12
View 9408
KAIST Department of Mechanical Engineering Ranked in 19th Place
- Ranked in 19th place in 2013 Quacquarelli Symonds (QS) World University Rankings by Engineering, Mechanical, Aeronautical and Manufacturing Subjects - KAIST ranked 19th in 2013 QS World University Rankings by Subject in Engineering, Mechanical, Aeronautical and Manufacturing Subjects. This is great progress compared to last year’s 51st-100th rank. The 2013 QS World University Rankings used four indicators, including academic reputation, employer reputation, citations per paper, and H-index citations, to assess 2,858 universities in the world, and evaluated up to 200th place in 30 academic subjects. KAIST earned high remarks from the H-index citations indicator, which is a new criteria introduced in the employer reputation rating. Moreover, the employer reputation section has risen sharply compared to the previous year. The H-index measures qualitatively and quantitatively the research outcomes of the researchers and assesses the number of papers written per professor and the average citation frequency of the papers. The proportions of the indicators differ by subjects. For the mechanical engineering field, they weigh 40%, 30%, 15%, and 15%, respectively. Rank Academic Employer Citations per paper H-index Citations Score 19 (51-100) 68.1 (78.9) 89.1 (60.2) 84.6 (83.1) 93.1 (N/A) 80.4 (74.6)
2013.06.10
View 7131
Technology for Non-Breaking Smartphone Display Developed
High-strength plastic display has been developed by applying a glass-fiber fabric. “Will bring about innovation to the field by replacing glass substrates” It is now possible to manufacture non-breaking smartphone display. Heavy glass substrates of large-screen televisions will be replaced with light plastic films. Professor Choon Sup Yoon from KAIST’s Department of Physics and KAIST Institute for Information Technology Convergence has developed the technology for high-strength plastic substrates to replace glass displays. The plastic substrate created by Professor Yoon and his research team have greatly enhanced needed properties of heat resistance, transparency, flexibility, inner chemical capability, and tensile strength. Although the material retains flexibility as a native advantage of plastic film, its tensile strength is three times greater than that of normal glass, which is a degree similar to tempered glass. In addition, Professor Yoon’s substrate is as colorless and transparent as glass and resists heat up to 450℃, while its thermal expansivity is only 10% to 20% of existing plastics. Glass substrates are currently used in practically every display such as mobile phone screens, televisions, and computer monitors for having smooth surface and satisfying basic conditions for display substrates. However, as glass substrates are heavy and easily broken, researchers studied colorless and transparent plastic polyimide films to replace glass substrates for their excellent thermal and chemical stability. Nonetheless, colorless and transparent polyimide films do not have sufficient heat resistance and mechanical solidity. To resolve this problem, polyimide films are impregnated with glass-fiber fabrics, but it was far from commercialization as the impregnation exacerbates the roughness of surface and light transmittance. The roughness of the surface increases as the solvent evaporates in the impregnation process, resulting in surface roughness of around 0.4μm. The downturn in light transmittance is due to light scattering effect by the discording refractive index of polyimide film and glass-fiber fabric. Professor Yoon’s research team resolved these issues by tuning the refractive indices of transparent polyimide film and glass-fiber fabric up to four decimal places, and by developing the technology of flattening the film’s surface roughness to a few nanometers. As a result, the research team achieved heat expansivity of 11ppm/℃, surface roughness of 0.9nm, tensile strength of 250MPa, bending curvature radius of 2mm, and light transmittance at 90% with a 110μm-thick glass-fiber fabric impregnated transparent polyimide film substrate. “The developed substrate can not only replace the traditional glass substrate but also be applied as flexible display substrate,” said Professor Yoon in prospect, “it will bring about technological innovation in display industry as it can fundamentally resolve the issue of shattering mobile phone displays, reduce the weight and thickness of large-area televisions, and apply Roll to Roll process in display manufacture.” Supported by the Ministry of Knowledge Economy for five years, the technology has applied for 3 patents and is in discussion for technology transfer with related business. Figure 1. The according (left) and discording (right) refractive indices of glass-fiber fabric and polyimide film. The characters on the left are sharp and clear, but the characters on the right appear foggy. Figure 2. Picture of the developed glass-fiber fabric
2013.06.09
View 8505
A KAIST research team developed in vivo flexible large scale integrated circuits
Daejeon, Republic of Korea, May 6th, 2013–-A team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering at KAIST has developed in vivo silicon-based flexible large scale integrated circuits (LSI) for bio-medical wireless communication. Silicon-based semiconductors have played significant roles in signal processing, nerve stimulation, memory storage, and wireless communication in implantable electronics. However, the rigid and bulky LSI chips have limited uses in in vivo devices due to incongruent contact with the curvilinear surfaces of human organs. Especially, artificial retinas recently approved by the Food and Drug Administration (refer to the press release of FDA"s artificial retina approval) require extremely flexible and slim LSI to incorporate it within the cramped area of the human eye. Although several research teams have fabricated flexible integrated circuits (ICs, tens of interconnected transistors) on plastics, their inaccurate nano-scale alignment on plastics has restricted the demonstration of flexible nano-transistors and their large scale interconnection for in vivo LSI applications such as main process unit (MPU), high density memory and wireless communication. Professor Lee"s team previously demonstrated fully functional flexible memory using ultrathin silicon membranes (Nano Letters, Flexible Memristive Memory Array on Plastic Substrates), however, its integration level and transistor size (over micron scale) have limited functional applications for flexible consumer electronics. Professor Keon Jae Lee"s team fabricated radio frequency integrated circuits (RFICs) interconnected with thousand nano-transistors on silicon wafer by state-of-the-art CMOS process, and then they removed the entire bottom substrate except top 100 nm active circuit layer by wet chemical etching. The flexible RF switches for wireless communication were monolithically encapsulated with biocompatible liquid crystal polymers (LCPs) for in vivo bio-medical applications. Finally, they implanted the LCP encapsulated RFICs into live rats to demonstrate the stable operation of flexible devices under in vivo circumstances. Professor Lee said, "This work could provide an approach to flexible LSI for an ideal artificial retina system and other bio-medical devices. Moreover, the result represents an exciting technology with the strong potential to realize fully flexible consumer electronics such as application processor (AP) for mobile operating system, high-capacity memory, and wireless communication in the near future." This result was published in the May online issue of the American Chemical Society"s journal, ACS Nano (In vivo Flexible RFICs Monolithically Encapsulated with LCP). They are currently engaged in commercializing efforts of roll-to-roll printing of flexible LSI on large area plastic substrates. Movie at Youtube Link: Fabrication process for flexible LSI for flexible display, wearable computer and artificial retina for in vivo biomedical application http://www.youtube.com/watch?v=5PpbM7m2PPs&feature=youtu.be Applications of in Vivo Flexible Large Scale Integrated Circuits Top: In vivo flexible large scale integrated circuits (LSI); Bottom: Schematic of roll-to-roll printing of flexible LSI on large area plastics.
2013.06.09
View 12422
6th TEDxKAIST Held on May 11, 2013
The sixth TEDxKAIST (https://www.facebook.com/TEDxKAIST?fref=ts) took place on May 11, 2013. The event was held under the theme, “Choice between Birth and Death,” and the slogan, “B-C-D,” which was inspired from Jean Paul Satre’s quote, “Life is a choice between birth and death.” The following speakers gave talks on the choices they have made and the impacts on their lives: Sonya S. Kwak, Professor of the Industrial Design Department at Ehwa Women’s University; Meoung-Seok Oh, a college student majoring in dental technology and business at Korea University; SooA Yeo, CEO of “Chalk,” a social venture company that offers talent donations; and Jeong-Won Lee, a senior researcher at Medical Imaging Laboratory, Electronics and Telecommunications Research Institute (ETRI). According to the speakers, every day we make decisions, and these decisions affect not only our own lives, but also our society as a whole. Speakers and participants explored the underlying relations between the choices being made and the outcome resulted therefrom. Attendees also shared their experiences and ideas that helped them to make the right decision and stressed the importance of choices we make in our lives. TEDxKAIST is an event operating under the official license of TED to hold TEDx programs based on TED’s slogan “Ideas Worth Spreading.” Since the first event took place under the theme “Science for Happiness, Happiness for Science” on September 2010, TEDxKAIST has brought together over 300 participants through five successful events.
2013.05.31
View 7333
International Student Conference (ICISTS-KAIST) to be Held in August
- 300 participants including university students worldwide and renowned speakers expected to gather - Ideal coexistence of science & technology and society explored under the theme of “Perfect Alliance” Science & technology and society are at the core of 21st century’s development. ICISTS-KAIST 2013, international conference for university students, seeks ways for the two to coexist harmoniously and is to be held from August 5 to 9 on KAIST campus as well as at Daejeon Convention Center. ICISTS stands for International Conference for the Integration of Science, Technology and Society. ICISTS-KAIST is a non-profit organization run by KAIST students who are directly engaged in the coordination, planning, finance, public relations, and management of this academic event. The upcoming ninth annual event of ICISTS (www.icists.org) 2013 is centered around the theme, “Perfect Alliance: Coexistence for Human Society.” The conference will last for four nights and five days; scholars and students across various academic backgrounds gather to narrow the gap between fields of study and discuss possible solutions to the problems in today’s society. The annual conference, ICISTS-KAIST attracts hundreds of participants from all over the world to KAIST, Daejeon and its most recent event last year witnessed discussions among some 300 students from 22 countries hearing the lectures from 40 academics and scholars. This year’s event will welcome the 16-year old inventor, scientist, and cancer researcher Jack Thomas Andraka, the founder of the “One Laptop Per Child” project Walter Bender, Chemistry Nobel Prize laureate Harold Walter Kroto, and many more. The application period for ICISTS-KAIST 2013 runs from May 20 to July 12, and applications are received through the website at www.icists.org. ICISTS-KAIST 2013 Promgram Summary Event Title: International Conference for the Integration of Science, Technology and Society 2013 (ICISTS-KAIST 2013) Theme: Perfect Alliance: Coexistence for Human Society Date and Venue: 2013 Aug. 5 (Mon.) ~ Aug. 9 (Fri.), KAIST Campus and Daejeon Convention Center Host and Organizer: ICISTS KAIST Sponsor: Korean National Commission for UNESCO, Korea Tourism Organization, Korea Ministry of Education, Science & Technology, KOFST Session Description: Keynote Speech - Keynote address on fundamental approach to coexistence Parallel Session - Multiple simultaneous lecture of delegates’ choice Group Discussion - Small group discussions among delegates and speakers Panel Discussion - In-depth and thought-revealing discussion among speakers Experience Session - First-person experience on relevant technology Team Project & Poster Fair - Team mission, poster exhibition and evaluation Subtopics: - New Values from Coexistence of Science & Technology and Society - Synergetic Resolution via Coexistence of Science & Technology and Society - Essential Communication for Coexistence of Science & Technology and Society Notable Speakers: - Gretchen Kalonji: Assistant to Director-General at UNESCO - Sheila Jasanoff: Director of STS Program at Harvard Kennedy School - Walter Bender: Former Director of MIT Media Lab and One Laptop Per Child- Jack Andraka: 16-year old Cancer Resesarcher
2013.05.31
View 8475
<<
첫번째페이지
<
이전 페이지
121
122
123
124
125
126
127
128
129
130
>
다음 페이지
>>
마지막 페이지 177