본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
by recently order
by view order
KAIST Ranks 26th in Engineering & Technology and 52nd overall in the Times Higher Education World University Rankings 2014-2015
The 2014-2015 Times Higher Education (THE) World University Rankings were released on October 1, 2014. KAIST took 52nd place in the overall rankings and 26th in the field of engineering and technology. THE used 13 performance indicators to evaluate universities, grouping them into five areas of teaching, research, citations, industry income, and international outlook. In recent years, KAIST has seen steady improvements in areas of research, citations, and international outlook. In addition to KAIST, two Korean universities, Seoul National University (50th) and Pohang University of Science and Technology (66th), were included within the top 100 universities. For details, please visit: http://www.timeshighereducation.co.uk/world-university-rankings/2014-15/world-ranking.
2014.10.03
View 7968
KAIST Co-owns the HEVC Patent Portfolio License
MPEG LA, LLC, a firm based in Denver, Colorado, which licenses patent pools covering essential patents required for the use of video coding technology, such as MPEG-2, MPEG-4 Visual (Part 2), and HEVC/H.264, announced the availability of the High Efficiency Video Coding (HEVC) Patent Portfolio License on September 29, 2014. The HEVC standard, also known as H.265 and MPEG-H Part 2, is necessary to improve video coding and transmission efficiency for the Internet, televisions, and mobile gadgets with increased speed and capacity. Through the portfolio license, users can easily obtain patent rights required for the HEVC standard in a single transaction, instead of negotiating separate licenses from multiple patent holders. A total of 23 enterprises currently own essential HEVC patents. KAIST is the only Korean university among the joint patent owners. Collaborating with the Korea Broadcasting System (KBS) and the Electronics and Telecommunications Research Institute (ETRI), Professor Mun-Chul Kim of the Electrical Engineering Department at KAIST developed one of the core patents. For a link to a press release distributed by MPEG LA, LLC, please see: MPEG LA, LLC, September 29, 2014 "MPEG LA, LLC Offers HEVC Patent Portfolio License" http://www.mpegla.com/main/Pages/Media.aspx
2014.10.02
View 11419
KAIST's Artist Residency Program Recruits Third Round Applicants
KAIST is accepting applications for the third Artist Residency Program, “The Endless Road,” from September 22, 2014 to October 21, 2014. Through the program, KAIST has supported emerging and promising artists, writers in particular, such as novelists, poets, storytellers, and playwrights, to live on the campus and encourage them to interact with students and faculty. Originally initiated to integrate art and science and to seek synergistic effects that benefit both communities, the program has been well received by artists and scientists. A total of three writers will be selected, and they will receive a stipend of USD 753.00 per month for six months. The program is available only in Korean.
2014.10.01
View 5831
KAIST's Education Donation Center Holds a Workshop
KAIST's Education Donation Center hosted a workshop on September 26, 2014 at the Munji campus, which included 60 officials from the Ministry of Education, the Republic of Korea, as well as from the provincial governments of Chungcheong and Kangwon. The workshop was organized to discuss how to best deliver donations to support education in the two provinces and to better connect educational organizations and schools in the regions. The center was created in July 2014 at KAIST to raise donations for education, implementing such activities as identifying potential donors, matching donors with beneficiaries, and building donation networks.
2014.10.01
View 5886
Thomson Reuters Nominates Distinguished Professor Ryong Ryoo for Its 2014 Nobel Citation Laureates in Chemistry
The Intellectual Property & Science business of Thomson Reuters announced on September 25th its “2014 Citation Laureates,” a list of candidates considered likely to win the Nobel Prize in the fields of physics, chemistry, physiology or medicine, and economics. The annual Thomson Reuters Citation Laureates will be recognized in perpetuity as contenders for a Nobel Prize. Distinguished Professor Ryong Ryoo of the Department of Chemistry, KAIST, has been nominated for the 2014 Thomson Reuters Citation Laureates in Chemistry. He is the first Korean scientist who has made the list. In addition to Professor Ryoo, seven other scientists were selected as possible contenders for the 2014 Nobel Prize in Chemistry, or in the future. Professor Ryoo was named alongside Charles T. Kresge, Chief Technology Officer of Saudi Aramco, Dhahran, and Galen D. Stucky, Professor of the Department Chemistry and Biochemistry at the University of California, Santa Barbara, for their research on the design of functional mesoporous materials (http://sciencewatch.com/nobel/2014-predictions/chemistry-laureates). Mesoporous materials have high surface areas with narrow pore-sized distribution and tunable pores diameters, offering promising properties and applications in various areas including adsorption, separation, sensing, and catalysis. Professor Ryoo has focused his research interest in the synthesis of new functional nanoporous materials such as hierarchical zeolites, mesoporous silicas, carbons, and organic-inorganic composite materials that can be used for advanced applications in the production of alternative energy sources and in green chemical processes. According to the press release by the Thomson Reuters, the list of the 2014 Nobel predictions includes 27 researchers representing 27 distinct academic and research organizations across nine different countries. The annual Thomson Reuters Citation Laureates study is based on the analysis of proprietary data from the research and citation database, identifying the most influential researchers in the categories of chemistry, physics, physiology or medicine, and economics. Since its inception in 2002, the study has accurately forecasted 35 Nobel Prize winners. For the full text of the press release, please go to: http://thomsonreuters.com/press-releases/092014/2014-nobel-laureates-predictions.
2014.09.29
View 11204
President of KAIST Becomes an International Board Member of Moscow Institute of Physics and Technology in Russia
President Sung-Mo “Steve” Kang of KAIST has been appointed a member of the International Board of the Moscow Institute of Physics and Technology (MIPT) in 2014, a leading Russian university specializing in theoretical and applied physics, mathematics, and related science and technology disciplines. President Kang is the only scientist from Asia to become the latest member of the MIPT International Board. Consisting of 11 highly regarded scientists and scholars from all around the world, such as Professor Carlo Rubbia, a Nobel laureate in physics in 1984, President Alexander F. Andreev of the Kapitsa Institute for Physical Problems, President Ralph Eichler of the Zurich Federal Institute of Technology, and President Jaques Biot of the École Polytechnique Paris. Currently, President Leo Rafael Raif of MIT chairs the Board. MIPT created the International Board (http://mipt.ru/en/about/general/international-board/) in 2013 to promote collaboration in international research and educational programs as well as to enhance its global visibility in the international community. MIPT was established in 1946 by a group of prominent Soviet scientists including Pyotr Kapitsa, a Nobel laureate in physics in 1978, and was approved later in 1951 by the government of the former Soviet Union as a state university. Often referred as the “Russian MIT,” MIPT has earned international and domestic recognition through its unique educational system, providing students with opportunities for rigorous education in fundamental science and extensive research at leading research institutions of the Russian Academy of Sciences.
2014.09.28
View 6411
KAIST and University of Waterloo in Canada Agree to Enhance Cooperation
KAIST and the University of Waterloo, Canada, signed a memorandum of understanding (MOU) to explore collaboration in education and research in areas such as computer science, electrical engineering, chemical engineering, quantum computing, and nanotechnology. The two universities also agreed to expand their cooperation in entrepreneurship, technology transfer, and startup support programs. The signing ceremony took place at the University of Waterloo (UW) in Ontario, Canada, on September 22, 2014. Feridun Hamdullahpur, president and vice-chancellor of UW, noted that “KAIST and the University of Waterloo have so much in common. Both institutions pursue excellence in teaching and research, attract some of the highest quality students and faculty alike, and seek out innovation that has the potential to change the world.” President Steve Kang said, “The University of Waterloo has been leading the co-operative education field, offering valuable opportunities to young students to receive classroom-based education with practical work experience. This has been an important approach in higher education, and perhaps more so in this age when technological innovations create new values for social advancement and new opportunities for better growth. I hope that through the collaboration, KAIST and the University of Waterloo will produce research outcomes with global recognition.” The University of Waterloo, located at the heart of Canada’s technology hub, has become one of the nation’s leading comprehensive universities in just half a century. The university is home to the world’s largest post-secondary co-operative education program, encouraging enterprising partnerships in learning and research. The picture shows the signing of the MOU by President Steve Kang (right) and President and Vice-chancellor Feridun Hamdullahpur (left).
2014.09.26
View 7558
KAIST Sees an Increase in the Admission of International Students
The Admission Office of KAIST has been recruiting prospective international students, and as part of their efforts, they have been visiting such regions as the Americas, Eastern Europe, Central Asia, and Africa. In 2014, the office focused on nations in Africa, visiting Ethiopia, Kenya, Rwanda, and Tanzania. The visiting KAIST representatives, consisting of faculty, international students, and staff members, hosted an admission conference for high school students in those four nations, offering information on KAIST education and research, as well as introducing Korea. As a result, a total of 37 African students (5 undergraduate and 32 graduate students) were admitted to KAIST for the 2014 fall semester. Among them was Gemechu Bekele Tolossa (picture below) from Ethiopia, who received the highest score at the Ethiopian college entrance examination in 2013. Tolossa had enrolled in a medical school at Addis Ababa University, Ethiopia, and was at the top of his class, but he left the school in order to apply for KAIST. When asked about his plan, Tolossa said, “I would like to study engineering and brain science at KAIST. KAIST offers me an excellent environment for learning and research, and I would like to make the most of it.” KAIST accepted 206 international students this year (45 undergraduate and 161 graduate students), brining the number of international students at 540, approximately 5% of the students enrolled at the university.
2014.09.24
View 6953
KAIST and the National Assembly of Korea Create a Committee to Plan "Patent Hub Korea"
The KAIST Graduate School of Future Strategy (GSFS) and the National Assembly of the Republic of Korea held a meeting at the National Assembly building in Seoul on September 23, 2014. At the meeting, the two organizations agreed to create a planning committee that will work for the construction of Korea as a global patent hub. In addition, the two also reviewed national laws and regulations related to patents and intellectual property rights (IPR) and discussed a future action agenda. Dean Kwang-Hyung Lee of GSFS, Chairman Ui-Hwa Chung of the National Assembly, Chairman Jong-Yong Yoon of the Presidential Council on Intellectual Property, and many representatives from the academia, government, and law participated in the meeting. Dean Lee, who is the co-chairman of the planning committee, said: “Although Korea has globally ranked number five in patents and IPR, it still suffers from the lack of relevant legal systems and professionals. I hope that the planning committee will serve as a catalyst to make Korea stronger in the field of intellectual property and to accelerate the creation of the Patent Hub Korea.”
2014.09.24
View 7271
Ultra-high Resolution 2-dimentional Real-time Image Capture with Super Lens
Ultra-high Resolution 2-dimentional Real-time Image Capture with Super Lens Applications to high-precision semiconductor processing or intracellular structures observation are possible. A joint research team led by Professors Yongkeun Park and Yong-Hoon Cho from the Department of Physics, KAIST, has succeeded in capturing real-time 2D images at a resolution of 100 nm (nanometers), which was impossible with optical lens due to the diffraction limit of light until now. Its future application includes high-precision semiconductor manufacturing process or observation of intracellular structures. This research follows the past research of the super-lens developed by Professor Park last April, using paint spray to observe images that have three times higher resolution than those discovered by conventional optical lens. Since optical lens utilize the refraction of light, the diffraction limit, which prevents achieving focus smaller than the wavelength of light, has always been a barrier for acquiring high-resolution images. In the past, it was impossible to observe objects less than the size of 200 to 300 nm in the visible light spectrum. In order to solve the problem of near-field extinction due to scattering of light, the research team used spray paint consisting of nano-particles massed with dense scattering materials to obtain high-resolution information. Then, by calculating and restoring the first scattering shape of light using the time reversibility of light, the researchers were able to overcome the diffraction limit. The original position of an object to be observed is obtained by deriving the complex trajectory of the light, and reversing the time to locate the particular position of the object. Professor Park said, “This new technology can be used as the core technology in all fields which require optical measurement and control. The existing electron microscopy cannot observe cells without destroying them, but the new technology allows us to visualize at ultra-high resolution without destruction.” The research results were published online in the 9th edition of Physical Review Letters, a prestigious international journal in the field of physics.
2014.09.23
View 8925
PIBOT, a small humanoid robot flies an aircraft
The 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) took place in Chicago, Illinois, on September 14-18, 2014. Professor David Hyunchul Shim and his students from the Department of Aerospace Engineering, KAIST, presented a research paper entitled “A Robot-machine Interface for Full-functionality Automation Using a Humanoid” at the conference. The robot called “PIBOT,” a pint-sized, tiny humanoid robot, uses a mixture of flight data and visuals to fly an airplane, capable of identifying and operating all of the buttons and switches in the cockpit of a normal light aircraft designed for humans. For now, the robot is only flying a simulator, but Professor Shim expects that “PIBOT will help us have a fully automated flight experience, eventually replacing human pilots.” The IEEE Spectrum magazine published an article on PIBOT posted online September 18, 2014. Please follow the link below for the article: IEEE Spectrum, September 18, 2014 Tiny Humanoid Robot Learning to Fly Real Airplanes http://spectrum.ieee.org/automaton/robotics/humanoids/tiny-humanoid-robot-learning-to-fly-real-airplanes
2014.09.23
View 12303
Development of a Photonic Diode with Light Speed, Single-Direction Transfer
A photonic diode using a nitride semiconductor rod can increase the possibility of developing all-optical integrated circuits, an alternative to conventional integrated circuits. Professor Yong-Hoon Cho's research team from the Department of Physics, KAIST, developed a photonic diode which can selectively transfer light in one way, using semiconductor rods. The photonic diode has a diameter of hundreds of nanometers (nm) and a length of few micrometers. This size enables its use in large-scale integration (LSI). The diode’s less sensitivity towards polarized light angle makes it more useful. In an integrated circuit, a diode controls the flow of electrons. If this diode controls light rather than electrons, data can be transferred at high speed, and its loss is minimized to a greater extent. Since these implementations conserve more energy, this is a very promising future technology. However, conventional electronic diodes, made up of asymmetric meta-materials or photonic crystalline structures, are large, which makes them difficult to be used in LSI. These diodes could only be implemented under limited conditions due to its sensitivity towards polarized light angle. The research team used nitride semiconductor rods to develop a highly efficient photonic diode with distinct light intensities from opposite ends. The semiconductor rod yields different amount of energy horizontally. According to the research team, this is because the width of the quantum well and its indium quantity is continuously controlled. Professor Cho said, "A large energy difference in a horizontal direction causes asymmetrical light propagation, enabling it to be operated as a photonic diode." He added that “If light, instead of electrons, were adopted in integrated circuits, the transfer speed would be expected as great as that of light.” The research findings were published in the September 10th issue of Nano Letters as the cover paper. Under the guidance of Professor Cho, two Ph.D. candidates, Suk-Min Ko and Su-Hyun Gong, conducted this research. This research project was sponsored by the National Research Foundation of Korea and KAIST’s EEWS (energy, environment, water, and sustainability) Research Center. Figure Description: Computer simulated image of photonic diode made of semiconductor rod implemented in an all-optical integrated circuit
2014.09.23
View 10195
<<
첫번째페이지
<
이전 페이지
101
102
103
104
105
106
107
108
109
110
>
다음 페이지
>>
마지막 페이지 176