본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
OLEV
by recently order
by view order
Popular Science May 2013: Online Electric Vehicle (OLEV) Introduced as Part of Smart Roads
Popular Science (PopSci), a famous American monthly magazine publishing popular science articles for general readers on science and technology subjects, introduced KAIST’s Online Electric Vehicle (OLEV) in its latest issue of May 2013. For the article, please see the attachment.
2013.04.25
View 7088
KAIST Develops Wireless Power Transfer Technology for High Capacity Transit
KAIST and the Korea Railroad Research Institute (KRRI) have developed a wireless power transfer technology that can be applied to high capacity transportation systems such as railways, harbor freight, and airport transportation and logistics. The technology supplies 60 kHz and 180 kW of power remotely to transport vehicles at a stable, constant rate. KAIST and KRRI successfully showcased the wireless power transfer technology to the public on February 13, 2013 by testing it on the railroad tracks at Osong Station in Korea. Originally, this technology was developed as part of an electric vehicle system introduced by KAIST in 2011 known as the On-line Electric Vehicle (OLEV). OLEV does not need to be parked at a charging station to have a fully powered battery. It gets charged while running, idling, and parking, enabling a reduction in size of the reserve battery down to one-fifth of the battery on board a regular electric car. The initial models of OLEV, a bus and a tram, receive 20 kHz and 100 kW power at an 85% transmission efficiency rate while maintaining a 20cm air gap between the underbody of vehicle and the road surface. OLEV complies with the national and international standards of 62.5 mG, a safety net for electromagnetic fields. In July 2013, for the first time since its development, OLEV will run on a regular road, an inner city route in the city of Gumi, requiring 40 minutes of driving each way. Today’s technology demonstration offers further support that OLEV can be utilized for large-scale systems. Professor Dong-Ho Cho, Director of Center for Wireless Power Transfer Technology Business Development at KAIST, explained the recent improvements to OLEV: “We have greatly improved the OLEV technology from the early development stage by increasing its power transmission density by more than three times. The size and weight of the power pickup modules have been reduced as well. We were able to cut down the production costs for major OLEV components, the power supply, and the pickup system, and in turn, OLEV is one step closer to being commercialized.” If trains receive power wirelessly, the costs of railway wear and tear will be dramatically reduced. There will be no power rails, including electrical poles, required for the establishment of a railway system, and accordingly, lesser space will be needed. Tunnels will be built on a smaller scale, lowering construction costs. In addition, it will be helpful to overcome major obstacles that discourage the construction of high speed railway systems such as noise levels and problems in connecting pantograph and power rails. KAIST and KRRI plan to apply the wireless power transfer technology to trams in May and high speed trains in September.
2013.03.19
View 11956
KAIST OLEV (On-Line Electric Vehicle) to begin operation!
An On-Line Electric Vehicle (OLEV) that can charge during travel will be put into service for the first time in the world on normal roads. From July of this year 2 OLEV buses will undergo trial operations in the city of Gumi. The trial route spans 24km from Gumi station and the region of In-Dong and the establishment of the route is expected to be of a 4.8billion Won scale. The start of the infrastructure construction will start on February and operation will start in July. KAIST had held sessions in October of last year to local governments and had a follow up OLEV suitability evaluation to those local governments expressing interest. The city of Gumi was elected due to its good electrical infrastructure and an administrative willingness to match. The OLEV developed by KAIST is an environmentally friendly vehicle that allows the transfer of electrical power using magnetic fields imbedded in the roads. Ordinary electric vehicles require frequent visits to replenish their power which gives the OLEV a comparative advantage as it can charge while on the road. The ability to charge whilst on the road means that the OLEV requires a smaller battery than the ordinary electrical vehicle resulting in lower prices and weight. The OLEV development commenced at KAIST in 2009 and in 2010 most of the core technologies required to realize the OLEV was developed and verified. Finally in 2012 steps were taken that will allow the commercialization of the OLEV. And in October of last year KAIST OLEV accomplished 75% power transfer efficiency that allowed a system that can be commercialized. The KAIST OLEV was named top 50 inventions in 2010 by Time Magazine.
2013.01.22
View 10336
New wireless charging device developed
The On-line Electric Vehicle (OLEV) developed by KAIST has made a step towards commercialization with the development of a more economic wireless charging device. Professor Chun-Taek Rim from the Department of Nuclear and Quantum Engineering at KAIST has developed a new I-shaped wireless charging device that differs from the pre-existing rail-type electricity feeder. This device can be modularly produced and requires relatively less construction, significantly reducing the cost of implementation. The KAIST OLEV is a new concept electric car that has a special electricity collecting device underneath it. The car’s battery is charged by magnetic fields produced from electric lines buried 15cm underneath the road. The vehicle was first tested in 2009, making it the first wireless electric car in the world. OLEV can be charged during stoppage time between traffic lights and receives real-time power when running. OLEV is currently in operation at the KAIST Munji Campus in Daejeon and is also being exhibited at the Yeosu Expo and Seoul Grand Park. The device itself has a charging capacity of 15kW, and the electricity is supplied through an electricity feeder with a width of 80cm with a space interval of 20cm. Despite being hailed as a technological breakthrough and revolutionary concept, KAIST OLEV has been criticized for problems in commercialization, due to the difficulties in installing wires beneath existing roads, which costs a considerable amount of money. The new I-shaped wireless charging device reduces the width of the electricity feeder by 10cm, a mere one-eighth of the size of the previous version, and greatly increases the charging power to 25kW. Furthermore, the left and right permissible space of automobiles has increased to 24cm and the magnetic field complies with the international design guidelines, making the OLEV safe for the human body. The reduction of the width has made the mass production of modules possible, making the installation of KAIST OLEV more economical and marketable. Professor Rim emphasized that compared with the existing rail-type electricity feeder, the new technology will need only one-tenth of the construction time and 80% of the cost, significantly improving OLEV’s constructability and workability. The research was published in the IEEE Transactions on Power Electronics last December, and Professor Rim was invited to talk at the Conference on Electric Roads & Vehicles, which was held in February in the United States, about the new technology.
2012.07.06
View 10773
KAIST Online Electirc Vehicle Introduced by CNN
CNN aired KAIST’s Online Electric Vehicle (OLEV) on August 29, 2011 in its program called “Eco Solutions” that reports on meeting people with innovative solutions to preserve the planet. The reporter went to Seoul Grand Park, an amusement park and introduced an online electric tram developed by KAIST and operated on a daily basis for park visitors since July 29, 2011. KAIST has designed different types of OLEVs including bus, SUV, and tram. The reporter said that “the online electric tram” at the park provides visitors with a “cleaner, greener, and convenience since it charges as you go.” Currently, three OLEVs are running inside the park, and KAIST plans to replace the rest of existing diesel trams with OLEVs in the near future. CNN Link: http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html Youtube Link: http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.09
View 9769
2010 Summer Davos Forum: Online Electric Vehicle Project Presented, September 13-15, 2010 in Tenjin, China
President Nam-Pyo Suh (picture above) was invited by the World Economic Forum to “2010 Summer Davos Forum” held in Tenjin, China, from September 13-15, 2010, at which he presented one of the university’s flagship research projects, Online Electric Vehicle (OLEV), in the session of IdeasLab. The IdeasLab is a special session format to present innovative ideas in partnership with leading universities including Harvard, MIT, Oxford, Ching Hwa University, Keio University, etc. KAIST is the first university in Korea that attended to this session. For details of President Suh’s presentation, Sustainability: An Engine for Growth, please follow the links below: http://www.youtube.com/watch?v=gDUU4RPjibg http://www.youtube.com/watch?v=-P9StHTt19E
2011.07.11
View 9483
Time: 50 Best Inventions of 2010--KAIST Online Electric Vehicle
Time, a magazine issued on November 22, 2010, has released a list of “50 Best Inventions of 2010” in its special article. KAIST’s Online Electric Vehicle (OLEV) was selected as one of the year’s biggest and coolest breakthroughs in science and technology. For the article, please click the link: http://www.time.com/time/specials/packages/article/0,28804,2029497_2030622_2029703,00.html
2010.11.12
View 8817
OLEV Safety Confirmed by International Standards
On September 19, KAIST announced that the electromagnetic (EM) field levels of its online electric vehicle (OLEV) measured in June and September of this year demonstrated verification of its safety. Last June, the EM field level of OLEV installed at the Seoul Grand Park was measured by the Korea Research Institute of Standards and Science (KRISS) to test its harmfulness to human. The results were 0.5 ~ 61mG which is within the national and international standards of 62.5mG. KRISS measured EM field levels on 22 spots on the side of and at the center of OLEV at a fixed distance (30cm) but variable heights (5cm~150cm) according to the national standard of measurement methods for electromagnetic fields of household appliances and similar apparatuses with regard to human exposure (IEC 62233). In addition, another testing took place on September 13 following a request by National Assemblywoman Young-Ah Park, a member of the National Assembly’s Education, Science and Technology Committee, who has raised an issue on the safety of OLEV. This testing session was held by EMF Safety, Inc., an institution designated by Park, and it tested the EM field level of the same OLEV train that was tested in June. As a result, the September measurements were well within the national and international standards with 0~24.1mG. The test was conducted under the presence of third party to produce a fair and objective result. As reference, the EM field level results are well within the American IEEE electromagnetic field standards of 1,100 mG. The September measurements were produced by Park’s recommendation of following the criteria specified in the measurement procedures of IEC 62110, “Electric and magnetic field levels generated by AC power systems to public exposure,” which were 15 measurements at a fixed 20cm distance at the side of and from the center of OLEV with variable heights of 50cm~150cm.
2010.09.27
View 11427
KAIST"s online electric vehicle will be introduced in Park City, Utah
Korean news media wrote articles on KAIST’s online electric vehicle (OLEV)—the OLEV technology will be exported to a US city. For details, please click the links below: Chosun Ilbo: KAIST to Export Electric Cars to U.S. Sep. 13, 2010 11:05 KST http://english.chosun.com/site/data/html_dir/2010/09/13/2010091300848.html Arirang News: KAIST Seals a Deal to Export its Unique Greed Car to US Market Sep. 13, 2010 http://www.arirang.co.kr/News/News_View.asp?nseq=106888&code=Ne2&category=2
2010.09.14
View 9597
"Our addiction to oil is the major cause of global warming."
Joongang Daily, one of the major newspapers in Korea, interviewed Professor John Spengler from Harvard University, an internationally renowned scholar in environmental science, who visited Korea for a conference. He mentioned KAIST’s online electric vehicle (OLEV) during the course of interview. The paper interviewed him on a wide range of environmental issues, and below is a translation of the original Korean article. For the Korean article, please download the attached picture file. “Our addiction to oil is the major cause of global warming.” Interview with Professor John Spengler from Harvard University—he is an internationally renowned scholar in environmental science. By Chan-Soo Kang, Joongang Daily September 3, 2010 “The oil spill in the Gulf of Mexico by British Petroleum (BP), a multinational oil company, took place against the backdrop of our addition to oil,” said Professor John Spengler (66 years old) from Harvard University on September 2. “The fact that we are addicted to oil means we are obsessed with mobility as well. Throughout the history of mankind, there has never been the time when we move from one place to another as frequently as today and are dependent on fossil fuels as much as today.” Visiting Korea to attend a conference co-sponsored by International Society of Exposure Science (ISES) and International Society of Environmental Epidemiology (ISEE) that was held at Coex in Seoul from August 28 to September 2, he gave his speech at plenary talks of the conference on the a topic titled, “Our health is our planet.” Professor Spengler is an internationally well-known expert in the research of indoor air pollution and environmental exposures of chemical compounds. At the conference, he mostly talked about an ecological catastrophe resulted from the explosion of an oil rig operated by BP in the Gulf of Mexico. He pointed out, “It’s been a problem that oil companies are more willing to take risks of exploring dangerous places to obtain oil as the demand for oil has increased. Excessive oil consumption cannot help but lead to global warming.” “Particularly,” he said, “the unusual climate events, frequently happening in recent years, including severe heat wave and drought in Russia this summer, are somewhat expected to occur by weather forecast models. However, it seems that the extreme weather patterns are taking place more frequently, and accordingly, we are facing more severe effects of weather conditions.” Professor Spengler emphasized that “We should change our diet and lifestyle to reduce the stress put on our ecosystem, such as getting protein from vegetables rather than from fish or meat and having a habit of curtailing energy consumption.” “While I’m here, I have a chance to see an online electric vehicle (OLEV) developed by KAIST. If this technology is applied, we can reduce environmental problems as such,” he assessed the development of OLEV. He also said that “the State of Utah in the US has expressed its intention to adopt the OLEV technology.” With regard to his research focus on indoor air pollution, Professor Spengler said, “We are having problems like “New House Syndrome” because we try to build a house with cheap materials. Governments should set a standard and control pollutants released from building materials in order to reduce risks resulted from indoor air pollution.” He argued, “In the early 1990s, when the Irish government introduced an enhanced regulation of air pollution in Dublin, the mortality rate of the city in that winter dropped dramatically.” “It’s been proven that as fine particle pollution gets worse, more patients with cardiovascular diseases die. Therefore, we need to make efforts to reduce the air pollution.” “Compared with other nations,” Professor Spengler estimated Korea as a nation that “definitely improved its air quality by introducing buses with a Compressed Natural Gas (CNG) engine to its public transportation system.” (End)
2010.09.06
View 10785
The 2010 International Forum on Electric Vehicle will be held at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea.
Universities, industries, and governments from the world gathered to make an important endeavor for the commercialization of electric vehicles that has emerged as a strong option to replace conventional cars with an internal combustion engine. With the potential benefit of electric cars, in view of environmental protection and less dependence of oil import, they still have limitations for the daily use in customers’ perspective. Electric cars are still very expensive to own with relatively short distance of driving with one charging and with the expensive and bulky nature of the batteries, in addition to the safety concerns with the Lithium batteries. The Korea Advanced Institute of Science and Technology (KAIST) will hold an international forum, at which it hopes to address a wide range of issues related to the development and commercialization of electric vehicles. The 2010 International Forum on Electric Vehicle will be held for three days at KAIST’s campus in Daejeon, South Korea, from June 17th to 19th, 2010. Internationally renowned speakers from Korea and overseas will present their views and conduct a discussion forum on the technology, market, and policy on electric vehicles. The event is open to the public. Major discussions, however, will take place on the second day, Friday, June 18, 2010, which will proceed with two sessions. In the first session, conference participants will discuss the topic of “policies and markets for electric vehicles,” and at the second session, they will take up the issue of “electric vehicle technologies.” Dr. Andrew Brown, president of SAE International and the executive director and chief technologist of Delphi, is scheduled to give a key note speech. The SAE International is a global association of more than 128,000 engineers and related technical experts in the aerospace, automotive, and commercial vehicle industries. Topics to be covered by Dr. Brown during his key note speech are, among other things, elements of market forces for hybrid electric vehicles, electric vehicles, or battery-powered vehicles; clean technologies necessary for sustainable development; pending issues facing the automotive industry to create a substantial share by electric cars and government aids to increase consumers’ buying power for expensive electric cars; technology innovation required for the improvement of batteries and power electronics; development of smart grids; and other key issues that would mature an ever-growing market for electric vehicles. President Nam Pyo Suh of KAIST will also deliver a key note remark on the overall accomplishments of online electric vehicle (OLEV) developed by KAIST. While stressing the OLEV’s technological breakthrough to succeed in the wireless in-motion power transfer through electromagnetic induction, President Suh will review the necessity of developing electric cars as a corresponding measure against climate changes and address the issues of battery weight and lifespan, charging time, and the limited amount of reserved Lithium. Dr. Steven Shladover from the California Partners for Advanced Transit and Highways (California PATH), established in 1986 in collaboration with the University of California in Berkeley and the California Transit, will attend the conference. California PATH is a multi-disciplinary program with universities statewide and cooperative projects with private industry, state and local agencies, and non-profit institutions to find solutions to the problems of California’s surface transportation systems through cutting edge research. California PATH once implemented a bold, innovative research project in the early 1990s in order to overcome the most difficult technical hurdle to reduce the heavy dependence of batteries for electric cars by adopting a non-contact transfer of electric power during vehicles’ movement. Despite the research declared as “unsuccessful” by California PATH, the implications of their innovative approach to solve an important issue inspired many researches subsequently followed—one of them is KAIST’s OLEV project. In addition, the Infineon Technologies AG, a leading semiconductor and system manufacturer based in Germany, which offers solutions for automotive, industrial and multimarket sectors for applications in communication and memory products, will come to the forum and present a paper on its expertise to develop the necessary components for electric vehicles. On the last day of the forum, all participants will have a chance to ride the Online Electric Vehicle (OLEV) at KAIST’s campus. For details of the event, please visit the website of “www.olev.co.kr/en/ifev or refer to the invitation attached herewith. About KAIST’s Online Electric Vehicle: The Online Electric Vehicle (OLEV) developed by KAIST is a dynamic plug-in electric car that receives electricity while running or stopping and thus acquired a complete mobility unlike other type of electric cars, whether hybrid or not. The OLEV reduces the size of a battery to one-fifth of the current battery installed in an electric car. Pure electric cars depend on a large bulky battery that has been a major obstacle to make the cars commercially accessible to the mass market. The OLEV gets charged wirelessly, a distinct difference to other dynamic plug-in electric cars including a tram or trolley, which directly picks up electricity from the road. To explain it further, the OLEV is electrified through power lines buried underground; when flowing low frequency of currents, an electric magnetic field is created around the underground power lines, and the pick-up gadget installed underbody of an electric vehicle converts the field into electricity; and the vehicle then uses electricity either for operation or stores it at a battery to be used for running the road that is not equipped with the power lines. The electric power generated from the underground travels to the surface of the road above 20cm-25cm. KAIST has succeeded to develop a commercial model of OLEV with a safe Electromagnetic Field (EMF), well below the international safeguard of 65mG. The actual model has been up and running at an amusement park in Seoul for the transportation of passengers. The non-contact charging method applied to the OLEV will accelerate the commercialization of electric cars by making a battery affordable and safer for a consumer.
2010.06.25
View 12917
President of Israel visited KAIST on June 9, 2010.
President of Israel, Shimon Peres, visited KAIST today on June 9, 2010 to witness the development of science and technology in Korea and explore ways of establishing collaboration and cooperation with industries and universities between Korea and Israel. President Peres led a delegation consisted of the Israeli Mister of Industry, Trade, and Labor, the Minister of Communication, and 60 business leaders from the top companies in the security, infrastructure, communication, high-tech, and water industries. Upon their arrival to the campus, the Israeli delegation was greeted by KAIST’s humanoid robot, “HUBO,” and then moved to its branch campus, IT Convergence Campus, for a ride of Online Electric Vehicle (OLEV) that has been developed by KAIST. The OLEV receives the necessary power through the cable lines buried underground, so it can be provided with a constant and continuous supply of electricity while running or stopping. Between roads and OLEVs is nothing but space. There is no electrical wires intricately crossed underbody of the electric car or above the road. The pick-up equipment installed beneath the body of the electric car collects magnetic fields created around the underground cables, which then converts the filed into electricity. The OLEV’s wireless, non-contact charging system made it possible for a battery currently used for hybrid or pure electric cars on the market to be smaller and cheaper. President Peres expressed a great interest in the technology applied to the OLVE, quoting, “the OLEV system is indeed very impressive.” He talked about efforts being made in Israel with respect to the development of electric cars. The country plans to replace the conventional transportation system with electric cars by constructing a network of battery exchange stations and roadside charge points which allow the cars to be charged whenever they are parked. “Despite the different approach taken by the two nations for the development of electric cars, I believe that transforming the automobile industry from combustion engine to electric system is the right direction we should all follow. Without addressing the current transportation system that heavily dependent on natural resources, we will not be able to promote “green growth on a global scale,” added President Peres. In addition to electric cars, President Peres took up a considerable portion of his time to exchange ideas on how to expand cooperative relations between universities in Korea and Israel, specifically in the area of space, biotechnology, nanotechnology, high-tech, renewable and alternative energy, and the EEWS initiatives that have been implemented by KAIST to find answers to global issues such as climate change and depletion of natural resources. The EEWS stands for energy, environment, water, and sustainability. In response, the president of KAIST pledged to set up a stronger and greater tie with research universities in Israel, particularly called for more collaboration between KAIST and Technion-Israel Institute of Technology. Also, the Israeli delegation had a tour for several Korean research and development centers in Daedeok Innopolis, located in the City of Daejeon, which is the 2nd largest science and research complex in Korea. Shimon Peres, the 9th president of Israel, held many of important government positions in Israel, among other things, Prime Minster and Minister of Defense. He won Nobel Peace Prize in 1994, together with Yitzhak Rabin and Yasser Arafat for the conclusion of a peace agreement, Oslo Accords, between Israel and Palestine Liberation Organization.
2010.06.09
View 15033
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2