본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
MONITOR
by recently order
by view order
KAIST Develops Healthcare Device Tracking Chronic Diabetic Wounds
A KAIST research team has developed an effective wireless system that monitors the wound healing process by tracking the spatiotemporal temperature changes and heat transfer characteristics of damaged areas such as diabetic wounds. On the 5th of March, KAIST (represented by President Kwang Hyung Lee) announced that the research team led by Professor Kyeongha Kwon from KAIST’s School of Electrical Engineering, in association with Chung-Ang University professor Hanjun Ryu, developed digital healthcare technology that tracks the wound healing process in real time, which allows appropriate treatments to be administered. < Figure 1. Schematic illustrations and diagrams of real-time wound monitoring systems. > The skin serves as a barrier protecting the body from harmful substances, therefore damage to the skin may cause severe health risks to patients in need of intensive care. Especially in the case of diabetic patients, chronic wounds are easily formed due to complications in normal blood circulation and the wound healing process. In the United States alone, hundreds of billions of dollars of medical costs stem from regenerating the skin from such wounds. While various methods exist to promote wound healing, personalized management is essential depending on the condition of each patient's wounds. Accordingly, the research team tracked the heating response within the wound by utilizing the differences in temperature between the damaged area and the surrounding healthy skin. They then measured heat transfer characteristics to observe moisture changes near the skin surface, ultimately establishing a basis for understanding the formation process of scar tissue. The team conducted experiments using diabetic mice models regarding the delay in wound healing under pathological conditions, and it was demonstrated that the collected data accurately tracks the wound healing process and the formation of scar tissue. To minimize the tissue damage that may occur in the process of removing the tracking device after healing, the system integrates biodegradable sensor modules capable of natural decomposition within the body. These biodegradable modules disintegrate within the body after use, thus reducing the risk of additional discomfort or tissue damage upon device removal. Furthermore, the device could one day be used for monitoring inside the wound area as there is no need for removal. Professor Kyeongha Kwon, who led the research, anticipates that continuous monitoring of wound temperature and heat transfer characteristics will enable medical professionals to more accurately assess the status of diabetic patients' wounds and provide appropriate treatment. He further predicted that the implementation of biodegradable sensors allows for the safe decomposition of the device after wound healing without the need for removal, making live monitoring possible not only in hospitals but also at home. The research team plans to integrate antimicrobial materials into this device, aiming to expand its technological capabilities to enable the observation and prevention of inflammatory responses, bacterial infections, and other complications. The goal is to provide a multi-purpose wound monitoring platform capable of real-time antimicrobial monitoring in hospitals or homes by detecting changes in temperature and heat transfer characteristics indicative of infection levels. < Image 1. Image of the bioresorbable temperature sensor > The results of this study were published on February 19th in the international journal Advanced Healthcare Materials and selected as the inside back cover article, titled "Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing." This research was conducted with support from the Basic Research Program, the Regional Innovation Center Program, and the BK21 Program.
2024.03.11
View 3408
KAIST Team Develops Highly-Sensitive Wearable Piezoelectric Blood Pressure Sensor for Continuous Health Monitoring
- A collaborative research team led by KAIST Professor Keon Jae Lee verifies the accuracy of the highly-sensitive sensor through clinical trials - Commercialization of the watch and patch-type sensor is in progress A KAIST research team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering and the College of Medicine of the Catholic University of Korea has developed a highly sensitive, wearable piezoelectric blood pressure sensor. Blood pressure is a critical indicator for assessing general health and predicting stroke or heart failure. In particular, cardiovascular disease is the leading cause of global death, therefore, periodic measurement of blood pressure is crucial for personal healthcare. Recently, there has been a growing interest in healthcare devices for continuous blood pressure monitoring. Although smart watches using LED-based photoplethysmography (PPG) technology have been on market, these devices have been limited by the accuracy constraints of optical sensors, making it hard to meet the international standards of automatic sphygmomanometers. Professor Lee’s team has developed the wearable piezoelectric blood pressure sensor by transferring a highly sensitive, inorganic piezoelectric membrane from bulk sapphire substrates to flexible substrates. Ultrathin piezoelectric sensors with a thickness of several micrometers (one hundredth of the human hair) exhibit conformal contact with the skin to successfully collect accurate blood pressure from the subtle pulsation of the blood vessels. Clinical trial at the St. Mary’s Hospital of the Catholic University validated the accuracy of blood pressure sensor at par with international standard with errors within ±5 mmHg and a standard deviation under 8 mmHg for both systolic and diastolic blood pressure. In addition, the research team successfully embedded the sensor on a watch-type product to enable continuous monitoring of blood pressure. Prof. Keon Jae Lee said, “Major target of our healthcare devices is hypertensive patients for their daily medical check-up. We plan to develop a comfortable patch-type sensor to monitor blood pressure during sleep and have a start-up company commercialize these watch and patch-type products soon.” This result titled “Clinical validation of wearable piezoelectric blood pressure sensor for health monitoring” was published in the online issue of Advanced Materials on March 24th, 2023. (DOI: 10.1002/adma.202301627) Figure 1. Schematic illustration of the overall concept for a wearable piezoelectric blood pressure sensor (WPBPS). Figure 2. Wearable piezoelectric blood pressure sensor (WPBPS) mounted on a watch (a) Schematic design of the WPBPS-embedded wristwatch. (b) Block diagram of the wireless communication circuit, which filters, amplifies, and transmits wireless data to portable devices. (c) Pulse waveforms transmitted from the wristwatch to the portable device by the wireless communication circuit. The inset shows a photograph of monitoring a user’s beat-to-beat pulses and their corresponding BP values in real time using the developed WPBPS-mounted wristwatch.
2023.04.17
View 5155
Attachable Skin Monitors that Wick the Sweat Away
- A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. - A new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports last month. “Wearable bioelectronics are becoming more attractive for the day-to-day monitoring of biological compounds found in sweat, like hormones or glucose, as well as body temperature, heart rate, and energy expenditure,” Professor Cho explained. “But currently available materials can cause skin irritation, so scientists are looking for ways to improve them,” he added. Attachable biosensors often use a silicone-based compound called polydimethylsiloxane (PDMS), as it has a relatively high water vapour transmission rate compared to other materials. Still, this rate is only two-thirds that of skin’s water evaporation rate, meaning sweat still gets trapped underneath it. Current fabrication approaches mix PDMS with beads or solutes, such as sugars or salts, and then remove them to leave pores in their place. Another technique uses gas to form pores in the material. Each technique has its disadvantages, from being expensive and complex to leaving pores of different sizes. A team of researchers led by Professor Cho from the KAIST Department of Bio and Brain Engineering was able to form small, uniform pores by crystallizing citric acid in PDMS and then removing the crystals using ethanol. The approach is significantly cheaper than using beads, and leads to 93.2% smaller and 425% more uniformly-sized pores compared to using sugar. Importantly, the membrane transmits water vapour 2.2 times faster than human skin. The team tested their membrane on human skin for seven days and found that it caused only minor redness and no itching, whereas a non-porous PDMS membrane did. Professor Cho said, “Our method could be used to fabricate porous PDMS membranes for skin-attachable devices used for daily monitoring of physiological signals.” “We next plan to modify our membrane so it can be more readily attached to and removed from skin,” he added. This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) of Korea under the Alchemist Project. Image description: Smaller, more uniformly-sized pores are made in the PDMS membrane by mixing PDMS, toluene, citric acid, and ethanol. Toluene dilutes PDMS so it can easily mix with the other two constituents. Toluene and ethanol are then evaporated, which causes the citric acid to crystallize within the PDMS material. The mixture is placed in a mould where it solidifies into a thin film. The crystals are then removed using ethanol, leaving pores in their place. Image credit: Professor Young-Ho Cho, KAIST Image usage restrictions: News organizations may use or redistribute this image, with proper attribution, as part of news coverage of this paper only. Publication: Yoon, S, et al. (2021) Wearable porous PDMS layer of high moisture permeability for skin trouble reduction. Scientific Reports 11, Article No. 938. Available online at https://doi.org/10.1038/s41598-020-78580-z Profile: Young-Ho Cho, Ph.D Professor mems@kaist.ac.kr https://mems.kaist.ac.kr NanoSentuating Systems Laboratory Department of Bio and Brain Engineering https://kaist.ac.kr Korea Advanced Institute of Science and Technology (KAIST) Daejeon, Republic of Korea (END)
2021.02.22
View 10903
Professor Sung Yong Kim Elected as the Chair of PICES MONITOR
< Professor Sung Yong Kim > Professor Sung Yong Kim from the Department of Mechanical Engineering was elected as the chair of the Technical Committee on Monitoring (MONITOR) of the North Pacific Marine Science Organization (PICES). PICES is an intergovernmental marine science organization that was established in 1992 through a collaboration between six North Pacific nations including South Korea, Russia, the United States, Japan, China, and Canada to exchange and discuss research on the Pacific waters. Its headquarters is located in Canada and the organization consists of seven affiliated maritime science and marine technology committees. Professor Kim was elected as the chair of the technical committee that focuses on monitoring and will be part of the Science Board as an ex-officio member. His term will last three years from November 2019. Professor Kim was recognized for his academic excellence, expertise, and leadership among oceanographers both domestically and internationally. Professor Kim will also participate as an academia civilian committee member of the Maritime and Fisheries Science and Technology Committee under the Korean Ministry of Oceans and Fisheries for two years from December 18, 2019. He stated, “I will give my full efforts to broaden Korean oceanography research by participating in maritime leadership positions at home and abroad, and help South Korea become a maritime powerhouse.” (END)
2019.12.22
View 7590
New Liquid Metal Wearable Pressure Sensor Created for Health Monitoring Applications
Soft pressure sensors have received significant research attention in a variety of fields, including soft robotics, electronic skin, and wearable electronics. Wearable soft pressure sensors have great potential for the real-time health monitoring and for the early diagnosis of diseases. A KAIST research team led by Professor Inkyu Park from the Department of Mechanical Engineering developed a highly sensitive wearable pressure sensor for health monitoring applications. This work was reported in Advanced Healthcare Materials on November 21 as a front cover article. This technology is capable of sensitive, precise, and continuous measurement of physiological and physical signals and shows great potential for health monitoring applications and the early diagnosis of diseases. A soft pressure sensor is required to have high compliance, high sensitivity, low cost, long-term performance stability, and environmental stability in order to be employed for continuous health monitoring. Conventional solid-state soft pressure sensors using functional materials including carbon nanotubes and graphene have showed great sensing performance. However, these sensors suffer from limited stretchability, signal drifting, and long-term instability due to the distance between the stretchable substrate and the functional materials. To overcome these issues, liquid-state electronics using liquid metal have been introduced for various wearable applications. Of these materials, Galinstan, a eutectic metal alloy of gallium, indium, and tin, has great mechanical and electrical properties that can be employed in wearable applications. But today’s liquid metal-based pressure sensors have low-pressure sensitivity, limiting their applicability for health monitoring devices. The research team developed a 3D-printed rigid microbump array-integrated, liquid metal-based soft pressure sensor. With the help of 3D printing, the integration of a rigid microbump array and the master mold for a liquid metal microchannel could be achieved simultaneously, reducing the complexity of the manufacturing process. Through the integration of the rigid microbump and the microchannel, the new pressure sensor has an extremely low detection limit and enhanced pressure sensitivity compared to previously reported liquid metal-based pressure sensors. The proposed sensor also has a negligible signal drift over 10,000 cycles of pressure, bending, and stretching and exhibited excellent stability when subjected to various environmental conditions. These performance outcomes make it an excellent sensor for various health monitoring devices. First, the research team demonstrated a wearable wristband device that can continuously monitor one’s pulse during exercise and be employed in a noninvasive cuffless BP monitoring system based on PTT calculations. Then, they introduced a wireless wearable heel pressure monitoring system that integrates three 3D-BLiPS with a wireless communication module. Professor Park said, “It was possible to measure health indicators including pulse and blood pressure continuously as well as pressure of body parts using our proposed soft pressure sensor. We expect it to be used in health care applications, such as the prevention and the monitoring of the pressure-driven diseases such as pressure ulcers in the near future. There will be more opportunities for future research including a whole-body pressure monitoring system related to other physical parameters.” This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT. < Figure 1. The front cover image of Advanced Healthcare Materials, Volume 8, Issue 22. > < Figure 2. Highly sensitive liquid metal-based soft pressure sensor integrated with 3D-printed microbump array. > < Figure 3. High pressure sensitivity and reliable sensing performances of the proposed sensor and wireless heel pressure monitoring application. > -ProfileProfessor Inkyu ParkMicro/Nano Transducers Laboratoryhttp://mintlab1.kaist.ac.kr/ Department of Mechanical EngineeringKAIST
2019.12.20
View 11906
KAIST's Patina Engraving System Awarded at ACM CHI
Professor Tek-Jin Nam’s research team of the Industrial Design Department of KAIST received the Best Paper Award in the 2015 Association for Computing Machinery’s (ACM) Conference on Human Factors in Computing Systems (CHI) which was held from April 18 to 23, 2015. The team consisted of two KAIST students: Moon-Hwan Lee, a Ph.D. candidate, and Sejin Cha, a master's student. The team was the first in Asia to receive the award. The ACM CHI represents the premier conference in the field of Human-Computer Interaction (HCI). This year’s event, held in Seoul, South Korea, was the first conference that the ACM had held in Asia in its thirty-three year history. The KAIST team’s paper, entitled “Patina Engraver: Visualizing Activity Logs as Patina in Fashionable Trackers,” ranked in the top 1% of 2,000 submitted papers. The team developed Patina Engraver, an activity tracker, which monitors and tracks fitness-related metrics such as distances walked or run, calorie consumption, heartbeat, sleep quality, and blood pressure. The device wirelessly connects to a computer or smartphone so that it can store and utilize long-term tracking data. However, what makes Patina Engraver, a smart wristband, different from other health trackers is its ability to display different design patterns based on users’ activity on the surface of the wristband. The research team was inspired to build this system from the fact that wearable electronics including activity trackers can be used not only as health care devices, but also as fashion items to express emotions and personalities. Equipped with an engraving feature, the charging pad or holder for Patina Engraver draws individualized patterns to reflect the user’s activities, such as walking or running, while the device is being charged. The pattern display syncs with the frequency of usage, therefore, the more the tracker is used, the greater the number of patterns will show up. According to the team, since Patina Engraver provides users with a personalized illustration of their activity on the tracker, users are more motivated to put on the tracker and exercise. Professor Nam said, “This research can be applied in producing other wearable devices to enhance users’ emotional satisfaction. When wearable technology is combined with design and emotion, the industry market will quickly expand.” Figure 1: Patina engraving system developed by KAIST research team Figure 2: The process of engraving illustrations of the activity records onto the tracker Figure 3: Personalized activity trackers based on activity records
2015.05.15
View 12017
Professor Son Hoon received "Structural Health Monitoring Person of the Year Award."
Professor Son Hoon (42) of the Department of Civil and Environmental Engineering received the “Structural Health Monitoring Person of the Year Award” at an international workshop on structural health monitoring held in Stanford University. The award is given by the editor and advisors of prestigious international magazine, “Journal of Structural Health Monitoring,” to a researcher with the best research record in a year. Professor Son has published 42 SCI level dissertations, registered 17 patents both domestically and internationally, and presented over 100 papers in international journals, for which he was recognized with the award. Professor Son is the first Korean who receives this award. One of the most significant achievements by Professor Son was “reference-free damage diagnosis” that he had developed in 2007. The diagnosis allows for the detection of wear and tear of a structure without having to use the foundation signal from the initial stages of the structure. The diagnosis contributed greatly in increasing the reliability of the signal information received from smart sensors attached to the structure by eliminating the environmental impact like temperature. Professor Son is currently working on green energy structural health monitoring system development related projects. His current work deals with airplanes, bridges, nuclear facilities, high speed railways, wind turbines, and etc. in cooperation with Boeing, United States Air Force Research Institute, Korea Research Foundation, Ministry of Defense Research Institute, Korea Expressway Corporation, POSCO, and etc. In addition, Professor Son successfully adopted a local monitoring method using smart piezoelectric sensors on a bridge in New Jersey as part of the Long Term Bridge Performance Program initiated by the National Highway Bureau. The success was even introduced in New Jersey’s public TV and newspaper agencies. Professor Son was given tenure at a record age of 39 in 2008 and received numerous awards given out by the Ministry of Education and Science and international organizations like the ‘Edward M Curtis’ Professor Award from Purdue University.
2011.10.10
View 9964
A Breakthrough for Cardiac Monitoring: Portable Smart Patch Makes It Possible for Real-time Observation of Heart Movement
Newly invented device makes the monitoring easier and convenient. Professor Hoi-Jun Yoo of KAIST, Department of Electrical Engineering, said that his research team has invented a smart patch for cardiac monitoring, the first of its kind in the world. Adhesive and can be applied directly to chest in human body, the patch is embedded with a built-in high performance semiconductor integrated circuit (IC), called Healthcare IC, and with twenty five electrodes formed on the patch’s surface. The 25-electrodes, with a capability of creating various configurations, can detect cardiac contractions and relaxations and collect electrocardiogram (ECG) signals. The Healthcare IC monitors ECG signals and sends the information to a portable data terminal like mobile phones, making it possible for a convenient, easy check up on cardiac observations. The key technologies used for the patch are the Healthcare IC that measures cardiovascular impedance and ECG signals, and the electronic circuit board made of four layers of fabric, between which electrodes, wireless antenna, circuit board, and flexible battery are installed. With the P-FCB (Planar Fashionable Circuit Board) technology, the research team explained, electrodes and a circuit board are directly stacked into the fabric. Additionally, the Healthcare IC (size: 5mm x 5mm), which has components of electrode control unit, ECG and cardiovascular resistance detection unit, data compression unit, Static Random Access Memory (SRAM), and wireless transmitter receiver, is attached on the fabric. The Healthcare IC is operated by an ultra-low electrical power. Like a medicated patch commonly used to relieve arthritis pains, the surface of smart patch is adhesive so that people can carry it around without much hassle. A finished product will be 15cm x 15 cm in size and 1mm high in thickness. The Healthcare IC can measure cardiovascular impedance variances with less than 0.81% distortion in 16 different configurations through differential current injectors and reconfigurable high sensitivity detection circuitry. “The patch will be ideal for patients who suffer a chronic heart disease and need to receive a continuous care for their condition. Once commercialized, the patch will allow the patients to conduct a self-diagnosis at anytime and anywhere,” said Yan Long, a member of the research team. There has been a continuously growing demand worldwide since 2000 for the development of technology that provides a suitable healthcare management to patients with a chronic heart disease (e.g., cardiovascular problems), but most of the technology developed today are only limited to monitoring electrical signals of heart activity. Cardiovascular monitors, commonly used at many of healthcare places nowadays, are too bulky to use and give uncomfortable feelings to patients when applied. Besides, the current monitors are connected to an electrical line for power supply, and they are unable to have a low power communication with an outdoor communication gadget, thus unavailable for wide use. Professor Yoo gave his presentation on this new invention at an international conference, International Solid-State Circuits Conference, held on February 8-10 in San Francisco. The subject of his presentation was “A 3.9mW 25-electorde Reconfigurable Thoracic Impedance/ECG SoC with Body-Channel Transponder.” (Picture 1) Structure of Smart Patch (Picture 2) Smart patch when applied onto human body (Picture 3) Data received from smart patch (Picture 4) Healthcare IC
2010.02.17
View 13708
H.Y.Choi won BSPA
H.Y.Choi won BSPA Hyun-Young Choi, Doctor’s course at the Lightwave Systems Research Laboratory (LSRL) of Department of Electrical Engineering of KAIST (Professor in charge Yoonchul Jung), won the Best Student Paper Awards (BSPA) in the Asia-Pacific Optical Communications 2006. BSPA is awarded to the most prospective paper in the field of Optical Transmission, Switching, and Subsystems. Choi suggested an OSNR monitoring technique among performance monitoring techniques for the efficient maintenance and management of optical network in her paper. Her technique is based on a polarization-nulling method using the polarization features of optical signals. It employs polarization mode dispersion compensator and acousto optic tunable filter (AOTF) to prevent monitoring errors arising from polarization mode dispersion (PMD) and non-linear double refraction, which considerably improves the monitoring technique and makes it possible to demonstrate a technique proposed at ultra long haul network.
2006.10.16
View 13257
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1